<<

A Retrospective

Chris QuiggCERN Courier 5V]LTILY CERN Courier 6J[VILY Fermi National Accelerator100 years of Laboratory Collider

of the top CDF Run II preliminary L = 1.0 fb–1 CDF Run II Preliminary L = 1.0 fb-1 2 30 July 2011 (* preliminary) combined CDF-I dilepton 167.4 ± 11.4 (± 10.3 ± 4.9) hadronic DØ-I dilepton -cooled beam log(L) 20 semileptonic 168.4 ± 12.8 (± 12.3 ± 3.6) 16 CDF-II dilepton 170.6 ± 3.8 (± 2.2 ± 3.1)

...... DØ-II dilepton ...... 174.0 ± 3.1 (± 1.8 ± 2.5) ...... 10 ...... CDF-I lepton+jets ...... 176.1 7.4 (± 5.1 ± 5.3) ...... ± ...... 0 ...... DØ-I lepton+jets ...... 180.1 ± 5.3 (± 3.9 ± 3.6) ...... fitted amplitude uncooled beam ...... 0 CDF-II lepton+jets ...... 173.0 ± 1.2 (± 0.6 ± 1.1) ...... –1 DØ-II lepton+jets dist. function (arbitrary units) ...... ( 0.8 1.2) ...... 174.9 ± 1.5 ± ± ...... CDF-I alljets ...... -10 186.0 11.5 (± 10.0 ± 5.7) .. . .. ± . . . data . cosine with A = 1.28 CDF-II alljets * 172.5 ± 2.1 (± 1.4 ± 1.5) –2 CDF-II track 166.9 9.5 (± 9.0 ± 2.9) –0.002 –0.001 0 0.001 0.002 ± 0 150.05 160.10 170.15 0.20 180.25 190.30 200.35 fract. momentum spread -1 CDF-II MET+Jets * 172.3 ± 2.6 (± 1.8 ± 1.8) decay time module 2π/Δm6s (PS)m [ps ] s Tevatron combination * 173.2 ± 0.9 (± 0.6 ± 0.8) ± stat ± syst) )LJ&')·V% ²%² RVFLOODWLRQVLJQDOPHDVXUHGLQÀYHELQVRI 7KHHIIHFWRIWKHHOHFWURQEHDPRQWKHHQHUJ\VSUHDGRIWKHDQWLSURWRQ V V χ2/dof = 8.3/11 (68.5%) SURSHUGHFD\WLPHPRGXORWKHPHDVXUHGRVFLOODWLRQSHULRG EHDPHOHFWURQFRROLQJZDVDPDMRULPSURYHPHQWRQ5XQ,, 150 160 170 180 190 200 :ERVRQDQGWRSTXDUNDUHNH\HOHPHQWVLQWKH6WDQGDUG0RGHO 2 mtop (GeV/c ) HEPAP· Washington· 27 OctoberQHWZRUNWKDWFRQVWUDLQVWKHSURSHUWLHVRIWKH+LJJVERVRQ$VWHOODU 2011 *H9ERRVWHU&ROGFRPSUHVVRUVZHUHDOVRDGGHGWRWKHVDWHOOLWH DFFRPSOLVKPHQWRIWKH7HYDWURQH[SHULPHQWVKDVEHHQWKHGHWHU )LJ7HYDWURQPHDVXUHPHQWVRIWKHWRSTXDUNPDVV UHIULJHUDWRUVLQWRORZHUWKHRSHUDWLQJWHPSHUDWXUHE\. PLQDWLRQRIWKH:ERVRQPDVVDV“*H9EHWWHUWKDQ SDUWVLQ)LJXUHVXPPDUL]HVWKH7HYDWURQPHDVXUHPHQWV RIWKH%EDU\RQV:LWK&')·VUHFHQWREVHUYDWLRQRIWKH DOORI PDNLQJLWSRVVLEOHWRUDLVHWKHEHDPHQHUJ\WR*H9+RZHYHU UE DQGWKHLULPSDFWRQWKHFXUUHQWZRUOGDYHUDJH7KHFRPELQHG WKHVSLQEDU\RQVFRQWDLQLQJRQHETXDUNKDYHEHHQREVHUYHG WKHQHZFRPSUHVVRUVZHUHQRWXVHGXQWLOWKHEHJLQQLQJRI5XQ,, 1  XQFHUWDLQW\DWWKHHQGRI5XQPD\DSSURDFK0H9 DWWKH7HYDWURQH[FHSWIRUWKHYE &(51&RXULHU6HSWHPEHU LQ 7KHJURZLQJGDWDVDPSOHVDYDLODEOHDWWKH7HYDWURQDORQJZLWK S :HDOVRRZHWRWKH7HYDWURQRXUNQRZOHGJHRIRUELWDOO\H[FLWHG WKHHYROXWLRQRIH[SHULPHQWDOWHFKQLTXHVKDYHPDGHLWSRVVLEOHWR %DQG% PHVRQVFRQVWUDLQWVRQWKHPDVVDQGTXDQWXPQXPEHUVRI 7KH0DLQ,QMHFWRUKDGDODUJHUDSHUWXUHDQGFRXOGGHOLYHUPRUH V ² REVHUYHFURVVVHFWLRQVWLPHVEUDQFKLQJUDWLRVZHOOEHORZSE ;  LPSRUWDQWHYLGHQFHRQ'²'PL[LQJDQGKLJKVHQVLWLY SURWRQVZLWKKLJKHUHIÀFLHQF\:KHQ5XQ,,EHJDQWKLVHQDEOHG 7KH1DWLRQDO0HGDORI7HFKQRORJ\ LQVHW DZDUGHGE\86$OORIWKHHOHFWURZHDNGLERVRQSDLUV :a=a:::=DQG==  LW\VHDUFKHVIRUUDUHGHFD\VLQWRGLPXRQV KDYHEHHQGHWHFWHGDWWKHUDWHVSUHGLFWHGE\WKH6WDQGDUG0RGHO 7KH7HYDWURQH[SHULPHQWVPHWRQHRIWKHNH\WDUJHWVIRU5XQE\ WKHGHOLYHU\RIPRUHSURWRQVWRWKHDQWLSURWRQWDUJHWDQGEHWWHU 3UHVLGHQW*HRUJH%XVKWR+HOHQ(GZDUGV'LFN/XQG\5LFK2UU ² 0DVWHU\RIWKHVHFKDQQHOVLVDSUHUHTXLVLWHWRWKH+LJJVERVRQ GHWHUPLQLQJWKHIUHTXHQF\RI%V²%VRVFLOODWLRQV)ROORZLQJDWZR WUDQVIHUHIÀFLHQFLHVIRUSURWRQVDQGDQWLSURWRQV7KHUHZHUHDOVR DQG$OYLQ7ROOHVWUXSLQIRUWKHLUOHDGLQJUROHVZLWKWKHVHDUFKDWPRGHUDWHDQGKLJKPDVVHVEXWWKH\FDUU\WKHLURZQSK\V VLGHGOLPLWSXEOLVKHGE\'‘WKH&')FROODERUDWLRQGHWHUPLQHGWKH LPSURYHPHQWVWRWKH$QWLSURWRQ6RXUFHDQGWKHLQFRUSRUDWLRQRI 7HYDWURQ ,PDJHFUHGLW)HUPLODE9LVXDO0HGLD6HUYLFHV LFVLQWHUHVWDVZHOOWKHSRVVLELOLW\RIYDOLGDWLQJWKH6WDQGDUG0RGHO RVFLOODWLRQIUHTXHQF\DV“SV² $EXOHQFLDHWDO  DQHZSHUPDQHQWPDJQHWULQJWKH5HF\FOHULQWKH0DLQ,QMHFWRU VWUXFWXUHRIWKHWULSOHJDXJHFRXSOLQJVDQGVHDUFKLQJIRUDQRPD 7KHRVFLOODWLRQVLJQDOLVVKRZQLQÀJXUH7KLVEHDXWLIXOPHDVXUH ORXVFRXSOLQJVLQFRPSDWLEOHZLWKWKH6WDQGDUG0RGHO6RIDUWKH PHQWLQOLQHZLWK6WDQGDUG0RGHOH[SHFWDWLRQVFRQVWUDLQVWKH WXQQHO,QLWLDOO\PHDQWWRUHF\FOHDQWLSURWRQVLWZDVQHYHUXVHG 'XULQJ5XQ,,WKH)HUPLODEDFFHOHUDWRUFRPSOH[FRQVLVWHGRIWKUHHJDXJHERVRQLQWHUDFWLRQVDUHFRQVLVWHQWZLWKHOHFWURZHDN PDQQHULQZKLFKQHZSK\VLFVPLJKWVKRZLWVHOILQ%SK\VLFV IRUWKLVSXUSRVHLQVWHDGLWZDVXVHGWRVWDVKDQGFRRODQWLSURWRQV VHYHQDFFHOHUDWRUVWKDWWRJHWKHUGHOLYHUHGEHDPIRUWKHFROOLGHUWKHRU\LQHYHU\SDUWLFXODU 7KHGLVFRYHU\RIWKHWRSTXDUNE\WKH7HYDWURQFROODERUDWLRQVLQ ZDVDODQGPDUNDFKLHYHPHQW $EHHWDO$EDFKLHWDO GHOLYHUHGIURPWKHDQWLSURWRQVRXUFH SURJUDPPHWZRQHXWULQREHDPVDQGRQHWHVWEHDP,WKDVSHUFrom bottom to top &DULWKHUVDQG*UDQQLV %\VHDUFKHVE\&')KDG ,QLWLDOOXPLQRVLWLHVDWWKHEHJLQQLQJRI5XQ,,ZHUHLQWKHUHJLRQ IRUPHGPDJQLÀFHQWO\RYHUWKH\HDUV$OOEXWWKH7HYDWURQZLOOQRZ&')DQG'‘KDYHH[HUWHGDEURDGLPSDFWRQRXUNQRZOHGJHRI UDLVHGWKHORZHUERXQGRQWKHWRSTXDUNPDVVWR*H9H[FOXGLQJ RIðFP²V²$OXPLQRVLW\LPSURYHPHQW´FDPSDLJQµZDV FRQWLQXHRSHUDWLQJWRFDUU\)HUPLODELQWRWKHIXWXUH VWDWHVFRQWDLQLQJKHDY\TXDUNV6WXGLHVRIWKHSURGXFWLRQDQG&(51&RX GHFD\VRI:LQWRWE$KHDY\WRSGHFD\VVRVZLIWO\WKDWLWFDQQRW GHFD\G\QDPLFVRITXDUNRQLXPVWDWHVKDYHUHSHDWHGO\FKDOOHQJHG EHREVHUYHGGLUHFWO\EXWPXVWEHLQIHUUHGIURPLWVGLVLQWHJUDWLRQ LQLWLDWHGDQGLPSOHPHQWHGFRQFXUUHQWO\ZLWKWKHSK\VLFVSUR ULHU6HSWHPEHUS 1HYHUWKHOHVVWKH7HYDWURQGHÀQHGWKHSKHQRPHQRORJLFDOPRGHOVZKLOHPHDVXUHPHQWVRIEDQGWTXDUN LQWRDERWWRPTXDUNDQGD:ERVRQ²ERWKRIZKLFKDUHWKHPVHOYHV JUDPPH,PSURYHPHQWVFRQWLQXHGWREHPDGHRYHUPRVWRIWKH ODERUDWRU\IRU\HDUV,WKDVEHHQDQLQFUHGLEOHH[SHULHQFHIRUSURGXFWLRQKDYHPDGHSRVVLEOHVKDUSWHVWVRI4&'FDOFXODWLRQV XQVWDEOHSDUWLFOHV7KHKXQWWRRNRIIZLWKWKHJURZLQJGDWDVHWV 5XQ,,SHULRG6LJQLÀFDQWLPSURYHPHQWVZHUHPDGHWRWKHDQWL WKRVHRIXVIRUWXQDWHHQRXJKWRZRUNRQLW DWQH[WWROHDGLQJRUGHU7KH7HYDWURQH[SHULPHQWVDFFRXQWIRU DYDLODEOHWRERWK&')DQG'‘LQ²DQGVRRQWKHSRV QHDUO\DOORIRXUNQRZOHGJHRIWKH%FPHVRQZLWKSUHFLVHPHDV VLELOLW\RIREVHUYLQJWRSZDVLQWKHDLU'‘VXEVHTXHQWO\UDLVHGWKH SURWRQVRXUFHUHVXOWLQJLQDQLQFUHDVHLQWKHVWDFNLQJUDWHIURP XUHPHQWVRIWKHPDVVDQGOLIHWLPH7KH7HYDWURQFRQWULEXWHVZRUOG ORZHUERXQGWR*H90RUHRYHUDJURZLQJERG\RIREVHUYD   OHDGLQJPHDVXUHPHQWVRIPDVVHVDQGOLIHWLPHVRI%PHVRQVDQG WLRQVWKDWSUREHGTXDQWXPFRUUHFWLRQVWRWKHHOHFWURZHDNWKHRU\

ð WRð DQWLSURWRQVSHUKRXU7KH7HYDWURQODWWLFHZDV Résumé V EDU\RQVDQGKDVEHHQWKHXQLTXHVRXUFHRILQIRUPDWLRQRQPDQ\ SRLQWHGWRDWRSTXDUNPDVVLQWKHUDQJH²*H9)LQGLQJ LPSURYHGDQGPDJQHWVZHUHUHVKLPPHGWRFRUUHFWSUREOHPVZLWK $GLHXDX7HYDWURQ WKH´VPDUWEROWVµ6OLSVWDFNLQJZDVGHYHORSHGLQWKH0DLQ,QMHFWRU  ZKLFKUHVXOWHGLQPRUHSURWRQVRQWKHDQWLSURWRQWDUJHW /·LQVWDOODWLRQGXSUHPLHUV\QFKURWURQVXSUDFRQGXFWHXUGXPRQGH +RZHYHUWKHODUJHVWVLQJOHLPSURYHPHQWPDGHGXULQJ5XQ,, DFRPPHQFpj)HUPLODELO\DDQV$XMRXUG·KXLOH7HYDWURQD ZDVWKHGHYHORSPHQWDQGLPSOHPHQWDWLRQRIHOHFWURQFRROLQJ IDLWFLUFXOHUVRQGHUQLHUIDLVFHDX$XFRXUVGHVRQH[SORLWDWLRQLO LQWKH5HF\FOHU7KLVHIIRUWOHGE\6HUJHL1DJDLWVHYZDVFRP DIRXUQLGHVIDLVFHDX[SRXUFLEOHÀ[HDLQVLTXHGHVIDLVFHDX[HQ PLVVLRQHGLQDQGUHVXOWHGLQVPDOOHUORQJLWXGLQDOHPPL FROOLVLRQFHTXLDDPHQpGHQRPEUHXVHVGpFRXYHUWHV/·LGpHG·XQ WDQFHV8VLQJWKH5HF\FOHUWRVWDVKDQGFRRODOVRLQFUHDVHGWKH V\QFKURWURQVXSUDFRQGXFWHXUDFRPPHQFpDYHF5REHUW:LOVRQHQ VWDFNLQJUDWHLQWKHDQWLSURWRQVRXUFHEHFDXVHSURWRQVFRXOGEH DYDQWODPLVHHQSODFHGHFHTXLHVWPDLQWHQDQW)HUPLODE/HV RIIORDGHGWRWKHUHF\FOHURIWHQPDNLQJWKHFRROLQJPRUHHIÀ WUDYDX[PHQDQWDXGpYHORSSHPHQWGHODPDFKLQHRQWFRPPHQFp FLHQW7KHQHWLQFUHDVHIURPHOHFWURQFRROLQJZDVPRUHWKDQ VpULHXVHPHQWHQHWGL[DQVSOXVWDUGOH©GRXEOHXUG·pQHUJLHª DIDFWRURIWZR2WKHULPSURYHPHQWVLQFOXGHGDUHGXFWLRQRI FRPPHRQO·DSSHODLWDFFpOpUDLWVRQSUHPLHUIDLVFHDX5REHUW'L[RQ WKH` LQWKHWZRLQWHUDFWLRQUHJLRQVDQGWKHUHZDVDYLJRURXV QRXVUDFRQWHO·KLVWRLUHGHO·DFFpOpUDWHXUTXLDpWpSHQGDQWGH SURJUDPPHWRLPSURYHWKHUHOLDELOLW\RIWKHHQWLUHFRPSOH[$OWR QRPEUHXVHVDQQpHVOHFKDPSLRQGXPRQGHGHVKDXWHVpQHUJLHV JHWKHUWKHLPSURYHPHQWVUHVXOWHGLQLQLWLDOOXPLQRVLWLHVDIDFWRURI EHWWHUWKDQWKHRULJLQDOGHVLJQ Roger L Dixon, .

 Fermilab Tevatron· 1983–2011

First high- superconducting Model for HERA (e±p) ring Key milestone toward Large Collider >5 Wilson Prizes 4 National Medals of Technology

2 July 1983: 512-GeV 800-GeV Fixed-target experiments, 1984–2000

2 3 4 Symposium in Celebration ofthe Fixed Target Program with the , Tevatron

Fermi National Accelerator Laboratory June 2, 2000

5 Tevatron proton- collider

CDF

D0

6 Antiproton source

7 First 1.6-TeV collisions· 13 October 1985, 02:32

8 CDF

9 During final months of operation at 1.96 TeV

12 fb–1 delivered, 10+ fb–1 recorded

10 1.6 TeV 1.8 TeV 1.96 TeV

11 12 CERN Courier 5V]LTILY 100 years of superconductivity

Electron cooling in the Recycler

electron-cooled beam

uncooled beam dist. function (arbitrary units)

–0.002 –0.001 0 0.001 0.002 fract. momentum spread

13 7KHHIIHFWRIWKHHOHFWURQEHDPRQWKHHQHUJ\VSUHDGRIWKHDQWLSURWRQ EHDPHOHFWURQFRROLQJZDVDPDMRULPSURYHPHQWRQ5XQ,,

*H9ERRVWHU&ROGFRPSUHVVRUVZHUHDOVRDGGHGWRWKHVDWHOOLWH UHIULJHUDWRUVLQWRORZHUWKHRSHUDWLQJWHPSHUDWXUHE\. PDNLQJLWSRVVLEOHWRUDLVHWKHEHDPHQHUJ\WR*H9+RZHYHU WKHQHZFRPSUHVVRUVZHUHQRWXVHGXQWLOWKHEHJLQQLQJRI5XQ,, LQ 7KH0DLQ,QMHFWRUKDGDODUJHUDSHUWXUHDQGFRXOGGHOLYHUPRUH SURWRQVZLWKKLJKHUHIÀFLHQF\:KHQ5XQ,,EHJDQWKLVHQDEOHG 7KH1DWLRQDO0HGDORI7HFKQRORJ\ LQVHW DZDUGHGE\86 WKHGHOLYHU\RIPRUHSURWRQVWRWKHDQWLSURWRQWDUJHWDQGEHWWHU 3UHVLGHQW*HRUJH%XVKWR+HOHQ(GZDUGV'LFN/XQG\5LFK2UU WUDQVIHUHIÀFLHQFLHVIRUSURWRQVDQGDQWLSURWRQV7KHUHZHUHDOVR DQG$OYLQ7ROOHVWUXSLQIRUWKHLUOHDGLQJUROHVZLWKWKH LPSURYHPHQWVWRWKH$QWLSURWRQ6RXUFHDQGWKHLQFRUSRUDWLRQRI 7HYDWURQ ,PDJHFUHGLW)HUPLODE9LVXDO0HGLD6HUYLFHV  DQHZSHUPDQHQWPDJQHWULQJWKH5HF\FOHULQWKH0DLQ,QMHFWRU WXQQHO,QLWLDOO\PHDQWWRUHF\FOHDQWLSURWRQVLWZDVQHYHUXVHG 'XULQJ5XQ,,WKH)HUPLODEDFFHOHUDWRUFRPSOH[FRQVLVWHGRI IRUWKLVSXUSRVHLQVWHDGLWZDVXVHGWRVWDVKDQGFRRODQWLSURWRQV VHYHQDFFHOHUDWRUVWKDWWRJHWKHUGHOLYHUHGEHDPIRUWKHFROOLGHU GHOLYHUHGIURPWKHDQWLSURWRQVRXUFH SURJUDPPHWZRQHXWULQREHDPVDQGRQHWHVWEHDP,WKDVSHU ,QLWLDOOXPLQRVLWLHVDWWKHEHJLQQLQJRI5XQ,,ZHUHLQWKHUHJLRQ IRUPHGPDJQLÀFHQWO\RYHUWKH\HDUV$OOEXWWKH7HYDWURQZLOOQRZ RIðFP²V²$OXPLQRVLW\LPSURYHPHQW´FDPSDLJQµZDV FRQWLQXHRSHUDWLQJWRFDUU\)HUPLODELQWRWKHIXWXUH &(51&RX LQLWLDWHGDQGLPSOHPHQWHGFRQFXUUHQWO\ZLWKWKHSK\VLFVSUR ULHU6HSWHPEHUS 1HYHUWKHOHVVWKH7HYDWURQGHÀQHGWKH JUDPPH,PSURYHPHQWVFRQWLQXHGWREHPDGHRYHUPRVWRIWKH ODERUDWRU\IRU\HDUV,WKDVEHHQDQLQFUHGLEOHH[SHULHQFHIRU 5XQ,,SHULRG6LJQLÀFDQWLPSURYHPHQWVZHUHPDGHWRWKHDQWL WKRVHRIXVIRUWXQDWHHQRXJKWRZRUNRQLW SURWRQVRXUFHUHVXOWLQJLQDQLQFUHDVHLQWKHVWDFNLQJUDWHIURP ðWRðDQWLSURWRQVSHUKRXU7KH7HYDWURQODWWLFHZDV Résumé LPSURYHGDQGPDJQHWVZHUHUHVKLPPHGWRFRUUHFWSUREOHPVZLWK $GLHXDX7HYDWURQ WKH´VPDUWEROWVµ6OLSVWDFNLQJZDVGHYHORSHGLQWKH0DLQ,QMHFWRU ZKLFKUHVXOWHGLQPRUHSURWRQVRQWKHDQWLSURWRQWDUJHW /·LQVWDOODWLRQGXSUHPLHUV\QFKURWURQVXSUDFRQGXFWHXUGXPRQGH +RZHYHUWKHODUJHVWVLQJOHLPSURYHPHQWPDGHGXULQJ5XQ,, DFRPPHQFpj)HUPLODELO\DDQV$XMRXUG·KXLOH7HYDWURQD ZDVWKHGHYHORSPHQWDQGLPSOHPHQWDWLRQRIHOHFWURQFRROLQJ IDLWFLUFXOHUVRQGHUQLHUIDLVFHDX$XFRXUVGHVRQH[SORLWDWLRQLO LQWKH5HF\FOHU7KLVHIIRUWOHGE\6HUJHL1DJDLWVHYZDVFRP DIRXUQLGHVIDLVFHDX[SRXUFLEOHÀ[HDLQVLTXHGHVIDLVFHDX[HQ PLVVLRQHGLQDQGUHVXOWHGLQVPDOOHUORQJLWXGLQDOHPPL FROOLVLRQFHTXLDDPHQpGHQRPEUHXVHVGpFRXYHUWHV/·LGpHG·XQ WDQFHV8VLQJWKH5HF\FOHUWRVWDVKDQGFRRODOVRLQFUHDVHGWKH V\QFKURWURQVXSUDFRQGXFWHXUDFRPPHQFpDYHF5REHUW:LOVRQHQ VWDFNLQJUDWHLQWKHDQWLSURWRQVRXUFHEHFDXVHSURWRQVFRXOGEH DYDQWODPLVHHQSODFHGHFHTXLHVWPDLQWHQDQW)HUPLODE/HV RIIORDGHGWRWKHUHF\FOHURIWHQPDNLQJWKHFRROLQJPRUHHIÀ WUDYDX[PHQDQWDXGpYHORSSHPHQWGHODPDFKLQHRQWFRPPHQFp FLHQW7KHQHWLQFUHDVHIURPHOHFWURQFRROLQJZDVPRUHWKDQ VpULHXVHPHQWHQHWGL[DQVSOXVWDUGOH©GRXEOHXUG·pQHUJLHª DIDFWRURIWZR2WKHULPSURYHPHQWVLQFOXGHGDUHGXFWLRQRI FRPPHRQO·DSSHODLWDFFpOpUDLWVRQSUHPLHUIDLVFHDX5REHUW'L[RQ WKH` LQWKHWZRLQWHUDFWLRQUHJLRQVDQGWKHUHZDVDYLJRURXV QRXVUDFRQWHO·KLVWRLUHGHO·DFFpOpUDWHXUTXLDpWpSHQGDQWGH SURJUDPPHWRLPSURYHWKHUHOLDELOLW\RIWKHHQWLUHFRPSOH[$OWR QRPEUHXVHVDQQpHVOHFKDPSLRQGXPRQGHGHVKDXWHVpQHUJLHV JHWKHUWKHLPSURYHPHQWVUHVXOWHGLQLQLWLDOOXPLQRVLWLHVDIDFWRURI EHWWHUWKDQWKHRULJLQDOGHVLJQ Roger L Dixon, Fermilab.

 CDF & D0 Highlights discovery Exacting measurements: mt, MW, Bs oscillations Innovations in technique Silicon vertex detector in LAr-238U calorimetry Secondary vertex trigger· multilevel triggering Multivariate analysis techniques Mining petabyte data sets Scientific interests and capabilities expand and deepen respond to new opportunities deliver a harvest of results not imagined at the start

14

15 Evolution of the strong coupling

16 Angular distribution of dijet production confirms Rutherford-scattering-like expectation of QCD are pointlike and structureless at resolution of nearly 1/(3 TeV) Dijet mass spectrum extends beyond 1.2 TeV with no evidence for unexpected resonances

17 Electroweak Physics

Each experiment expects O(107) W and 400K Z bosons in each leptonic decay channel. Production cross sections agree with QCD; possible primary luminosity monitor for LHC experiments. Z (+ jets) production tests standard-model simulations. Forward-backward of leptons produced in W decay provides important information about the up- quark and down-quark parton distribution functions.

18 W mass: aim for ±15 MeV Tevatron combined

CDF Run 0/I80.436 ± 0.081

D0 Run I80.478 ± 0.083

CDF Run II80.413 ± 0.048

Tevatron 200780.432 ± 0.039

D0 Run II 80.402 ± 0.043

Tevatron 2009 80.420 ± 0.031

LEP2 average80.376 ± 0.033

World average 80.399 ± 0.023

July 09 80 80.2 80.4 80.6

mW (GeV)

19 105 Tevatron Run II SM Cross Sections / D0 pub./prelim. 4 / CDF pub./prelim. 10 Theory 95% CL upper limit 103 3-gauge- couplings 102 consistent with

Production Cross Section [pb] electroweak theory 10

1 MH=160

July 2011 10-1 W Z W Z WW WZ t ZZ H ! ! tt "WW

20 Heavy flavors

Production and decay of states Measurements of b- and t-quark production

Bc mass and lifetime and lifetimes of B and Unique source of information on many B-baryons

Orbitally excited B and Bs mesons X(3872) mass and quantum numbers Important evidence on D0 mixing Precise CP for D0 → π+π–, B+ → J/ψK+ High-sensitivity searches for rare dimuon decays

21 22 Frequency of Bs oscillations

-1 CDF Run II Preliminary L-1 = 1.0 fb 2 CDF Run II Preliminary L = 1.0 fb data 2± 1 m 95% CL limit 17.2 ps-1 1.5 1.645 m sensitivity 31.3 ps-1 1 data ± 1.645 m Amplitude data 1± 1.645 m (stat. only) 0.5 0 0 -0.5

-1 -1 Fitted Amplitude -1.5 data -2 -2 cosine with A=1.28 0 5 10 15 20 25 30 35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 -1 6ms [ps ] Decay Time Modulo 2//6ms [ps]

–1 Δms = 17.77 ± 0.13 ps

23 1995

24 D0

......

25 CDF

26 Top mass in the electroweak theory

240240

200200

160160

120120 Top Mass (GeV) Top Top Mass (GeV)

8080

4040 19901990 1995 2000 2005 2010 Year

27 Mass of the Top Quark 15 July 2011 (* preliminary)

CDF-I dilepton 167.4 !11.4 (!10.3 ! 4.9)

DØ-I dilepton 168.4 !12.8 (!12.3 ! 3.6)

CDF-II dilepton 170.6 ! 3.8 (! 2.2 ! 3.1)

DØ-II dilepton 174.0 ! 3.1 (! 1.8 ! 2.5)

CDF-I lepton+jets 176.1 ! 7.4 (! 5.1 ! 5.3)

DØ-I lepton+jets 180.1 ! 5.3 (! 3.9 ! 3.6)

CDF-II lepton+jets 173.0 ! 1.2 (! 0.6 ! 1.1)

DØ-II lepton+jets 174.9 ! 1.5 (! 0.8 ! 1.2)

CDF-I alljets 186.0 !11.5 (!10.0 ! 5.7)

CDF-II alljets * 172.5 ! 2.1 (! 1.4 ! 1.5)

CDF-II track 166.9 ! 9.5 (! 9.0 ! 2.9)

CDF-II MET+Jets * 172.3 ! 2.6 (! 1.8 ! 1.8)

Tevatron combination * 173.2 ! 0.9 (! 0.6 ! 0.8) (! stat ! syst) 2 CDF March’07 r 12.4/dof ! = 2.7 8.3/11(! (68.5%)1.5 ! 2.2) 0 150 160 170 180 190 200 2 mtop (GeV/c )

28 Δmt = 0.7 GeV ΔMW = 15 MeV

29 Top as a tool

Top pair production in agreement with QCD

No top pair resonances seen

Top-quark charge = +2/3

70% of the W bosons emitted in top decay are longitudinally polarized, rest left-handed

Electroweak single top production observed

Lifetime close to 0.3 yoctosecond

Spin correlations accord with

30 Standard-model search The ultimate challenge for the Tevatron

gg → H · H(W or Z) · VV → H dozens of distinct final states

31 16 predicted cross sections and the decay branching ratios (the decay H W +W − is the dominant decay for the region of highest sensitivity). We therefore use the linear interpolations to extend→ the results from the 5 GeV/c2 mass grid investigated to points in between. The regions of Higgs boson masses excluded at the 95% C.L. thus obtained are 2 2 156

Search for standard-model Higgs boson

Tevatron Run II Preliminary, L ! 8.6 fb-1 LEP Exclusion Tevatron 10 Exclusion Expected Observed ±1" Expected ±2" Expected 156–177 GeV 95% CL Limit/SM 1 SM=1

Tevatron Exclusion July 17, 2011 100 110 120 130 140 150 160 170 180 190 200 2 mH(GeV/c )

32

FIG. 5: Observed and expected (median, for the background-only hypothesis) 95% C.L. upper limits on the ratios to the SM cross section, as functions of the Higgs boson mass for the combined CDF and D0 analyses. The limits are expressed as a multiple of the SM prediction for test masses (every 5 GeV/c2)forwhichbothexperimentshaveperformeddedicatedsearches in different channels. The points are joined by straight lines for better readability. The bands indicate the 68% and 95% probability regions where the limits can fluctuate, in the absence of signal. The limits displayed in this figure are obtained with the Bayesian calculation. 33 Higgs boson:10 fb–1 projections

95% CL exclusion for MH < 185 GeV

3σ “evidence” possible for MH < 120 GeV 150 GeV < MH < 175 GeV

34 Diverse searches for new phenomena Limits on supersymmetric extra spatial signs of new strong dynamics new gauge bosons magnetic monopoles … Tevatron experiments did not find what is not there

35 Some observations do not match expectations

Forward-backward asymmetry in top pairs (CDF+D0)

Anomalous like-sign charge asymmetry in b pairs (D0)

Excess of pairs + W (CDF–D0)

Work in progress at Tevatron and LHC

36 One week of special runs at 300 and 900 GeV Primary physics goals include Min Bias: multiplicity distributions, charged pseudorapidity densities, mean pt, … Central exclusive hadron production Underlying event studies

Collected 300 GeV: 12M min bias, 9.2M diffractive, 1.8M zero-bias events. D0: 2.2M events 900 GeV: 54M min bias, 21M diffractive, 8M zero-bias events. D0: 20M events

37 Still to come … • Higgs – Searches in all channels – Exclusion in the full 115-185 GeV mass range, if Higgs does not exist – Results of precision measurements of backgrounds, including W+jets(including b-jets), ttbar cross sections, di-boson production, etc. • Top quark – Precision measurement of top quark mass with below 1 GeV precision – Precision measurement of top/anti-top quarks mass difference – Measurements of top quark production properties, including cross sections – Measurements of top quark decay properties – Measurements of s- and t-channels single top quark production • Electroweak – W boson mass measurement with ~20 MeV precision – Production and decay properties of di-bosons: WW, WZ, ZZ, W!, Z!, etc.

– Precision measurement of sin("W) • B physics – Studies of di- production asymmetry and CP violation – Measurements of b-baryons and b-mesons production, properties and lifetimes • QCD – Precision measurements of single, double and triple jets cross sections – Precision measurement of angular correlations in jets production

– Extraction of #QCD and PDFs • New Phenomena – Model independent search for new physics – searches, including MSSM Higgs • Detectors performance over 10 years and 10 fb-1 of data

38 CDF Collaboration

39 D0 Collaboration

40 Thanks to CDF and D0 collaborators not only for the results they have put in the books, but also for the demands they have placed on theorists to calculate more processes ever more accurately, to make more reliable simulations, and to think in new ways.

41 Reserve

42 Resource needs

2012 guest and visitor budget comparable to 2011 level to bring people to Fermilab for offline and physics leadership/analysis.

Computing resources at 2011 level.

Continued support to university postdocs and graduate students.

Most international collaborators wish to participate in analysis to completion

43 44 CDF Publication History

45 Early Tevatron history: H. Edwards, Ann. Rev. Nucl. Part. Sci. 35, 605 (1985).

Recent overview: S. Holmes, R. S. Moore, and V. Shiltsev, JINST 6, T08001 (2011).

Anecdotal accounts: V. Shiltsev, “Accelerator Breakthroughs, Achievements and Lessons from the Tevatron Collider,” 2010 John Adams Lecture, http://j.mp/qndsb5; J. Peoples, Wilson Prize Lecture, “The Tevatron Collider: A Thirty Year Campaign,” http://j.mp/ohzgjh. S. Holmes, DPF 2011 Lecture, “Celebrating the Tevatron: the Machine(s),” http:// j.mp/mRCPsQ.

46 Two recent results

47 W helicity in top decays (dilepton events)

+0.18 f0 = 0.71 0.17 (stat.) 0.06 (syst.) − ± f = 0.07 0.04 (stat.) 0.03 (syst.) + − ± ± 48 t¯t spin correlations

Spin correlations

49 Projected sensitivities to standard-model Higgs boson

50 51 D0 Run 2 (e)

52 53 54 D0

55 CDF

56