June 24, 1930. ’ ~ ‘T

Total Page:16

File Type:pdf, Size:1020Kb

June 24, 1930. ’ ~ ‘T , June 24, 1930. ’ ~ ‘T. BIRKENMAI'ER 1,765,397 SLACK FULLER Filed Sept. 13, 1926 2 sheé'?s'i-sheet l . ...................- June 24, 1930.v ‘v T.'BIRKENMA|ER 1,765,397 SLACK FULLER ‘Filed Sept. 13, .1926 - 2‘ Sheets-Sheet 2 E: l Away-:22: v V!!!I (4745*? J6 %W "$21! \ ' Patented June 24, 1930 1,765,397 A srfrss sorrel; ‘ THEODORE BIRKENMAIER, ST. LOUIS, MISSOURI, ASSIGNOR TO W. N. MATTHEWS CORPORATION, OF ST. LOUIS, MISSOURI, A CORPORATION OF 'MISSOURI, " SLACK FULLER Application ?led September 13, 1926. Serial No. 135,112. This invention relates to slackpullers, and iron or like frame bent to an are ‘of one hun with regard to certain more speci?c features dred and eighty degrees at a section 3 there to a slack puller for wire, ‘cable and‘ similar of. The section 3is located substantially strands. ' midway between the two ends of the channel Among the several objects of the‘ inven-. 1. The two ends of said channel 1 are bolted ‘ tion may be noted the provision of‘an 1m?’ to a housing casting 5. ,The mid-section 3' proved slack puller which employs certain of the channel 1 has a boss or brace mem- ' split nut features of the class- used‘ in a co her 7 riveted thereto for the purpose of car pen'ding application of Walter A.‘ Heinrich, rying a swiveled clevis 9.’ The clevis 9 is Serial No. 106,286, filed May 3, 1926, but held by means of a conventional nut~and-bolt. 60 which introduces an improved means for combination 11 and carries a coupling pin 13 holding the nut closed, said means to be inde- I for purposes of fastening it to cable ends and‘ pendent of the driving force; a slack puller the like. The brace ‘member 7 is formed to of the class described employing a minimum engage , completely the" one hundred and ' number of parts; and one which can conse eighty degrees of an arc of the section 3, ‘for quently be built more ruggedly and is simpler purposes‘ of positively preventing inward in operation. Other objects will be in part collapse of the members under end strains. obvious and in part pointed out hereinafter. ,Longitudinally located with respect to The invention accordingly comprises the the c'hannel‘lisi provided a take-‘up or draw 20 elements and combination of elements, fea screw‘ 15» having an acme or likev type of 70 tures of construction, and arrangements of thread rcut thereon. Any suitable type of‘ parts which will be exempli?ed in the struc thread of proper strength may be used. I The ture hereinafter described, and the scope of screw 15 passes through'the casting 5 and‘v the application of which will be indicated in parts associated therewith (to be described)‘ Y the following claims. and emerges at the lower ‘end of the device. 75 In the accompanying drawings, in which It is provided at its outside orlower end with are illustrated two ofvarious possible em~ a preferably non-swiveling clevis 17, which bodiments of the invention, ‘ carries a coupling pin 19 for the purposeof Fig. 1 is a side elevation of the slack puller; fastening to "another end of the cable to be 30 ‘ Fig. 2 is a front elevation-thereof; stretched. The other end of the screw 15 _ Fig. 3 is a left end View of Fig. 2;v has a cross-head 16 pinned. thereto which Fig. 4: is a section taken on'line d-Jl of slidably engages the vgrooves of the sides of Fig. 2 and shows a worm ‘wheel drive; the channeled frame 1.‘ ‘The screw 15~can Fig. 5 is an enlarged lateral section taken not rotate but it may move longitudinally. 35 on line 5—5 of Fig. 1 and shows a split nut The casting 5 carries a- reducing gearyandv in closed position; ' ‘ ‘ a 'split‘nut driven thereby, adapted to engage Fig. 6 is a right end ‘view of Fig. 5; and» disengage the said screw 15. V ‘ Fig. 7 is a View similar to Fig. 5 and Referring now more particularly to Figs. shows the split nut in a partially open po— 2, 3 and 4:, there is shown a’sidewardly ex 40 sition; I tending portion 21 of the casting 5, formed 90 Fig. 8 is a right end View of Fig. 7; integrally therewith. The portion 21 is cored Fig. 9 is a cross section taken on line 95-9 out to receive a worm gear 23 and a thrust of Fig. 7 but shows, a slightly greater open ‘bearing 25 therefor. The bearing is'screwed ing of a split nut; ' home and acts as a cap.- 'It is held in a pre-. Fig. 10 is a fragmentaryview similar to determined position by means of a locking Fig. 7 but shows a modi?ed form with the screw 27 , (see Fig. 4). 'The bearing 25 also split nut in open position; and ‘ has a supporting portion or socket 29 for Fig. 11 is a right end view of Fig. 10.. rotatably supporting a'shaft ‘31, to which the Referring now more particularly to Fig. 1, worm v23is keyed. This shaft 31 passes out- 50 there is illustrated at numeral 1 a'channel wardly' from the portion ‘.21 and is there 100 i 2 1,765,397 provided with a ratchet wheel 33 fastened 69 is adapted to cooperate with another coni tightly thereto. Rotatably borne on a stub cal surface 75 forming part of a recess 77. end 35 of the shaft 31, and on the end of the This cooperation takes place when'the split portion 21, is a ratchet housing 37 ofa crank nut is drawn to the right 7). The arm 39. The crank arm39 is provided with recess 77 is cut into a split nut housing H. 70 a conventional hand grip 41 (Figs. 1 and 2). The conical surfaces 73 and 75 are in e?ect Within the housing 37 is pivoted a pawl43. camming surfaces. The pawl 43 is provided with two opposite The split nut is provided rearwardly with 1y ratcheting lugs either one of which may another shoulder 79, the outside peripheral 10 engage the teeth of the ratchet 33. A spring surface of which is adapted to slidably co~ 75 45 reacts from a pivot shaft 44 in the lions operate with a second wall 81 in the housing ing 37 opposite to the pivot of the pawl, H. A conical surface 83 of said shoulder 79 against said pawl at a point near and‘ above is adapted (when the split nut is expanded) ' the pivot thereof. This point near and above to cooperate with a conical surface 85 cut in 15 the pivot is provided with a lug 47 adapted wardly in said'housing H. _ to pinch and hold-the spring 45 in position Extending from the shoulder 79 is a thumb ' on the pawl. The spring is of the ?at leaf nut, 87. 1' This thumb nut 87 slidably ?ts a type. It is evident that if the spring 45 be radial slot 89in a cam plate 91 when the split initially in a state ofv strain, the pawl 43 will nut N is positioned to the right as shown in 20 tend to'be over~centered either. one way or Fig. 7. 1V hen said'nut is positioned farther theother, depending upon the initial lateral to the right than shown inFig. 7 the stem 93 curvature manually given to the spring 45. of said thumb nut 87 is adapted to cooperate This initial curvature is given to the spring with a circular slot 95 forming any extension by setting a handle 46 on the shaft 44 over of said wider slot 89. The cam plate 91_is center one way or another. The movement screwed down to the casting 5 and is pro 90' of this handle 46 is resisted in part by fric vided with a- passage 97 which permits free tionally engaging with lugs 48. By the above slidable movement of the non-rotatable screw described, means the worm gear 23 may be 15. Positioning of the nut 87 with respect rotated in either direction, that is, it may be to the slots 89, 95,- may normally be regulated 3 O ratcheted in either direction by setting the manually by a finger pressure at said nut, 95 handle 46. A nut 49 prevents the crank 39 that is7 whensaid nut can be reached. from ' being inadvertently removed end As illustrated in Fig; 9 the split nut hous wardly. ' ‘ . ing H is made'up of a suitable plurality of The gear 23 meshes with a worm wheel 51 segments 99 which are held to the casting 5 i 3 which has a bronze‘bushing 53 ?tted there by setscrews 101. .By' thus constructing the 100 to adapted to permit rotation of the worm housing H in segments, the assembly of the wheel with respect to, and around the screw device is facilitated. It is to be understood‘ ' member 15 (Figs. 5 to 8). The worm wheel that it is not absolutely necessary'that the. 51‘ is ‘adapted to normally react against an segmental pieces 99 be’ fashioned as a com‘ 40 endthrust bearing 55 supported in the cast plete circle. They may be separatedsubstan 105 a ing '5; It has ‘screwed thereto apair of op t-ial distances.‘ The axes of the dowel pins positely'disposed split nut keys 57 ,‘ each one 63 are positioned atrightangles tothe part— of which.
Recommended publications
  • Exploded View Slicer
    Explodedviewslicer: 834–EPBK DEKOHolland-VerbasB.V. Simon Stevinweg 19 6827BSArnhem TheNetherlands April2010 . DEKOHolland Recommendedsparepartslist834EPBK Partno. Description Assembly 2301-5202 V-belt knifebox 2301-5209 V-belt powerstroke 2301-5210 V-belt powerstroke 2301-5211 V-belt powerstroke 2601-0036 slidingpotentiometer thicknessregulator 2601-1083 switchgreen bezel 2601-1084 switchred bezel 2601-1111 microswitch knifebox 2601-6568 carbonbrushes powerstroke 2901-0007 E-promstackerprogrammed bezel 3201-4123 knob meattable 3301-3810 spindlebearing sharpener 3301-3824 beltpulley transporter 3701-3381 hingepiece meattable 3801-3350 knobwithpin thicknessregulator 3801-3199 pulley transporter 3801-3200 centerplateknob knifebox 3801-3287 splitnut/handle meattable 4101-3492 touchpanelbezel 4101-3610 transformergroup230Volt powerstroke 4101-3620 CPUboard bezel 4101-3821 hardnessing powerstroke 4101-3851 powerstrokeboard bezel 4101-3622 interconnectionboard tray/solenoidhousing 4101-3632 DCmotor powerstroke 4101-3634 motor230V50Hzbase 4301-3404 sharpeningstonewithshaft sharpener 4301-3405 deburringstonewithshaft sharpener 4301-3418 conveyorbelt transporter 4301-3424 solenoid tray/solenoidhousing 4301-3427 fingerholder tray/solenoidhousing 4301-3659 pulley transporter 4301-3687 beltassy base 4401-3300 disc meattable 4601-3527 steppingmotor tray/solenoidhousing 4601-3710 supportingshaft meattable 4601-3504 sharpenerassy sharpener DEKOHolland Explodedview:Base Concerncode:4601-0114-02
    [Show full text]
  • HUCO Leadscrews Brochure
    LEADSCREWS AND LINEAR RAILS 2 Leadscrews & Linear Rails Introduction Huco has chosen to offer Kerk Leadscrews because they are designed specifically for precision motion control applications. The screw thread form is unique to Kerk and has been created for maximum life, quiet operation and repeatable accuracy. Positional bi-directional repeatability is achieved within 0.0013 mm (0.0005î) and standard lead accuracy is better than 0.0006 mm/mm. Lead accuracies are available to 0.0001 mm/mm with individual screw mapping (laser interferometer verification) optional. A number of unique, patented, anti-backlash nut options are available to suit a variety of load conditions. Kerk nuts are characterised by low drag torque, low wear and high axial stiffness. Kerk ScrewRailsTM are a patented innovation in linear motion, combining both drive and support / guidance functions in a single, compact, coaxial component. The ScrewRail’s unique design eliminates the need for any external rail to screw alignment, giving savings in space as well as cost over typical two-rail systems. Where external rail support is required Kerk Linear Rails are designed to provide low cost, low friction and long life in a variety of motion control applications. Linear rails are available in burnished or TFE coated stainless steel. The Kerk Spline Shaft system has been designed for light load applications, again where low cost, low friction and long life are needed. These assemblies consist of light weight, aluminium splined shafts treated with Kerkís proprietary low friction TFE coating, mated with graphite and PTFE filled thermoplastic bushings. The bushings are supplied with integral brass collars to enable various mounting options without distorting the nut.
    [Show full text]
  • Superbolt Catalog 2005 Online.Indd
    T H E S O L U T I O N T O B O L T I N G P R O B L E M S ©2006 Superbolt, Inc. All Rights Reserved. ® CAT. DATE 9.05 DATE CAT. INNOVATION. QUALITY. EXPERIENCE. Bolting Technology Takes A Step Forward Tighten any size stud with a hand torque wrench! Supernut® Multi-Jackbolt Stud Tensioners utilize 2,500 Ton Structural Foam Injection Molding Press. Installation was accomplished in 2 hours using hand tools! jackbolts threaded through the main body of the nut to create large clamping forces. High pressure steam turbine Jackbolts are inlet flange. tightened with a hand torque wrench. High Compressive strength Jackbolts have a small friction diameter creating Final torque values on heat Superbolt Tensioners on a a high thrust exchanger verified with hand 1,000 Ton Diecast Machine. force with held torque wrench. relatively little torque. The thrust force of many jackbolts and the opposite reaction force of the main bolt head create a strong clamping force on the flange. 16-1/2” split nut on forging press columns. The thrust force from the A hardened jackbolts creates washer is an equally strong used to reaction force transfer in the main bolt force while head. protecting the flange face and 2 casing. This flexible disc coupling took 2 men 2-1/2 hours to install, saving Superbolt® products are protected by trademark rights and one or more U.S. this company 19 man hours! patents: RE 33490; 4,846,614; 5,083,889; 6,199,453; 6,381,827; 6,112,396; 6,263,764; other patents pending and corresponding foreign patents.
    [Show full text]
  • Why Superbolt® Tensioners?
    ® WWW.SUPERBOLT.COM 07 07 Why Superbolt® Tensioners? An Old Problem: Large diameter bolting presents requires some form of high several problems. The strength energy equipment. of a screw fastener increases with the square of its diameter, Slugging wrenches and crane however, the torque required wrenches are dangerous and increases with the third power. thermal tightening can be time consuming. Hydraulic wrenching Because of this, bolts with a can be expensive, time consuming, diameter greater than 1 inch inaccurate and can lead to thread cannot be effectively torqued to galling. Hydraulic tensioning also capacity with hand tools. shares some of these problems and Achieving proper preload levels adds problems with field retrofit. Hydraulic Hydraulic Thermal Crane Sledgehammer Tensioning Wrench Tightening Wrench The Simple Low torque for Solution: any size Supernut® 100,000 Torque Curve for Superbolt® Tensioners are designed 45,000 psi Bolt Stress as direct replacements for standard Torque Required bolting. They can be threaded (lb•ft) Torque 50,000 For Standard Nut onto a new or existing bolt, stud, Torque Required threaded rod or shaft. With our For Superbolt® products, bolting is fast, safe, Torquenut easy and accurate. 1 2 3 4 5 6 Thread Diameter (In.) Benefits: Only Hand Tools Required Safe To Use Flexing - Adds Elasticity Standard torque wrenches/small Eliminate common injuries associated Superbolt® Tensioners add elasticity air tools can generate higher bolt with other bolting methods. Our products to any bolted joint (see page 22). tensions than any other bolting can be used in awkward locations The joint becomes more resistant to method available.
    [Show full text]
  • The Solution To
    THE SOLUTION TO ME, ~ KVBI c An Old Problem: Large diameter bolting presents requires some form of high several problems. The strength energy equipment. of a screw fastener increases with the square of its diameter, Slugging wrenches and crane however, the torque required wrenches are dangerous and increases with the third power. thermal tightening can be time consuming. Hydraulic wrenching Because of this, bolts with a can be expensive, time consuming, diameter greater than 1 inch inaccurate and can lead to thread cannot be effectively torqued to galling. Hydraulic tensioning also capacity with hand tools. shares some of these problems and Achieving proper preload levels adds problems with field retrofit. 0 (~ QI"' ~7_ Hydraulic Hydraulic Thermal Crane Sledgehammer Tensioning Wrench Tightening Wrench The Simple Low torque for Solution: any size Supernut' TorqueCurvefor / Superbol Tensioners are designed . 45,000 psi Boll Stress I as direct replacements for standard / bolting. They can be threaded j Torque Required 50,0 For Standard onto a new or existing bolt, stud, ,/'ToIrlue Required threaded rod or shaft. With our For Superbolt products, bolting is fast, safe, Torque easy and accurate. 1 2 3 4 5 6 Thread Diameter (In.) Benefits: Only Hand Tools Required Safe To Use Flexing -Adds Elasticity Standard torque wrenches/small Eliminate common injuries associated Superbolt® Tensioners add elasticity air tools can generate higher bolt with other bolting methods. Our products to any bolted joint (see page 22). tensions than any other bolting can be used in awkward locations The joint becomes more resistant to method available. such as overhead bolts, on top of large thermal or dynamic cycles.
    [Show full text]
  • DME Chapter 4 Power Screws
    Chapter 4 Power Screws 4.1 Introduction The power screws (also known as translation screws) are used to convert rotary motion into translatory motion. For example, in the case of the lead screw of lathe, the rotary motion is available but the tool has to be advanced in the direction of the cut against the cutting resistance of the material. In case of screw jack, a small force applied in the horizontal plane is used to raise or lower a large load. Power screws are also used in vices, testing machines, presses, etc. In most of the power screws, the nut has axial motion against the resisting axial force while the screw rotates in its bearings. In some screws, the screw rotates and moves axially against the resisting force while the nut is stationary and in others the nut rotates while the screw moves axially with no rotation. 4.2 Types of Screw Threads used for Power Screws 1. Square thread. A square thread, as shown in Fig.(a) is adapted for the transmission of power in either direction. This thread results in maximum efficiency and minimum radial or bursting pressure on the nut. It is difficult to cut with taps and dies. It is usually cut on a lathe with a single point tool and it can not be easily compensated for wear. Strength of square threads is lowest of all the thread forms. Engagement and disengagement is difficult The square threads are employed in screw jacks, presses and clamping devices. 2. Acme or trapezoidal thread. An acme or trapezoidal thread, as shown in Fig.
    [Show full text]
  • Installation Instructions
    ME779-VRK QCC FILLER VALVE VALVE REPAIR KIT !!!WARNING!!! READ AND UNDERSTAND ALL INSTRUCTIONS INCLUDED WITH THIS REPAIR KIT RELIEVE ALL PRESSURE FROM SYSTEM BEFORE REMOVING VALVE FOR SERVICE NOTE: Numbers in brackets [ ] refer to the number in B. Reassembly the valve component list. 1. Apply Lubriplate or equivalent grease to Body Seal [2] and install into Body [1]. !WARNING! 2. Install Collet Washer [5], Conical Bearing [7], and Light Relieve all pressure from system before removing valve for Spring [8] onto POL Tailpiece [4]. service, and before any disassembly or repair. 3. Install Collar [9] halfway onto POL Tailpiece [4]. 4. Install Split Nuts #1 to #4 [6a-d] into Collar [9] in Read and understand all instructions included with the between Collet Washer [5] and Conical Bearing [7] as repair kit, prior to starting any repairs. shown. NOTE: Split Nut number is identified by a !GENERAL WARNING! corresponding number of dots on the edge near the Marshall Excelsior products are mechanical devices that Acme thread. are subject to wear, contaminants, corrosion, and aging of 5. Install Spring [10] and Spacer [11] onto POL Tailpiece components made of materials such as rubber and metal. [4]. Over time these devices will eventually become 6. Install POL Tailpiece [4] into Body [1] and torque to 50 inoperative. The safe service life of these products will ft-lbs. reflect the environment and conditions of use that they 7. Install Body Set Screw [3] into Body [1] and torque to are subjected to. Regular inspection and maintenance is 50 in-lbs. essential. Marshall Excelsior products have a long record 8.
    [Show full text]
  • Installation, Operation, & Maintenance Manual
    abc INSTALLATION, OPERATION, & MAINTENANCE MANUAL FOR 710 ELECTRIC CELL SAMPLER This Jiskoot Product is designed to provide outstanding service if correctly installed, used and maintained recognising the effects of the process conditions (temperature, pressure, wax/pour point, sediment, etc.), however this equipment WILL NOT accurately perform without suitable recognition of the requirements for overall system design. Truly representative sampling of crude oils etc., cannot be achieved by one single product in isolation. A well designed system and operating procedures as laid down in the Sampling Standards ISO 3171, API 8.2 and IP Chapter VI section 2 are mandatory. Please consult Jiskoot for further information and assistance. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Jiskoot Ltd. 2006 Jiskoot Ltd. All rights reserved. Jiskoot Ltd., formerly Jiskoot Autocontrol Ltd., also trades as “Jiskoot” and “ Jiskoot Inc 710 Electric Cell Sampler DEF TABLE OF CONTENTS 1 Warranty.................................................................................................................................3 2 Introduction............................................................................................................................3 3 Operating Instructions...........................................................................................................3 4 Glossary Of Special Terms....................................................................................................4
    [Show full text]
  • Superbolttechnology
    SUPERBOLT TECHNOLOGY Advanced bolting solutions ___ WHATEVER COMES ALONG, WE HOLD IT TOGETHER. ___ Superbolt was the world’s first to revolutionize nuts and bolts with the multi-jackbolt tensioner (MJT) in 1984. Since then, Superbolt has proven its technology in tens of thousands of successful installations. Superbolt tensioners are easy to work with and provide an overwhelming mechanical advantage with their unique design, which divides the load among multiple small jackbolts. Once installed properly, MJT connections are reliable, and can stay tight indefinitely. Even MJTs of enormous sizes are safe and can be installed or removed by a single worker with ordinary hand tools. But the revolution hasn’t stopped here. Superbolt continues to develop a multitude of solutions to solve the next generation of bolting challenges. With the widest range of tensioners on the market and constant growing portfolio, Superbolt has got you covered. Superbolt is a part of the Nord-Lock Group. Our global team of sales engineers and partners will give you the support needed to ensure that your bolted connections are optimized and safe. 2 THE SUPERBOLT STORY 6-15 Product portfolio About us Our technology Benefits & common applications Lifetime Warranty NEWS & INNOVATIONS 16-25 VersaTite GT/GTS EzFit HyFit STANDARD NUT & BOLT-STYLE TENSIONERS 26-35 GT, GTS, MT, CY, SB8, SB12, H650, H650T REACTIVE SIDE SOLUTIONS 36-39 Flexnuts SX8, SX12 COMPACT/LOW-PROFILE TENSIONERS 40-47 SJ, SJX, SSJX, NM/NI, SMX DYNAMIC APPLICATION TENSIONERS 48-53 CN, SP, MR, MRA CUTTING-EDGE
    [Show full text]
  • Patent Application Publication (10) Pub. No.: US 2004/0223829 A1 Barnett Et Al
    US 20040223829A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0223829 A1 Barnett et al. (43) Pub. Date: Nov. 11, 2004 (54) QUICK RELEASE THREADED FASTENER (57) ABSTRACT (76) Inventors: Jesse H. Barnett, Virginia Beach, VA (US); Michael J. Barnett, Milwaukee, A quick release fastener comprising a threaded shaft and a WI (US) Split nut arranged to release threads of the Shaft when spread open by Squeezing. The shaft may be, for example, a Screw Correspondence Address: or a bolt. The nut is longitudinally split into upper and lower MEREK, BLACKMON & VOORHEES, LLC mirror image Sections Such that half of each turn of the 673 S. WASHINGTON ST. threads is contained within a jaw of the upper Section and the ALEXANDRIA, VA 22314 (US) other half of each turn is contained within ajaw of the lower Section. A handle projects from each jaw, enabling the nut to (21) Appl. No.: 10/431,444 be opened fashion by Squeezing the handles together. The Filed: May 8, 2003 fastener is utilized with an appliance bearing a passageway (22) configured to receive the fastener. The passage way is Publication Classification configured Such that slight unthreading of the nut allows the jaws to expand, thereby releasing the Shaft from the nut. The (51) Int. Cl. ................................................ F16B 37/08 appliance may be a commode having a toilet Seat arranged (52) U.S. Cl. .............................................................. 411/433 to be retained by one or more of the novel fasteners. 6 2 Patent Application Publication Nov. 11, 2004 Sheet 1 of 4 US 2004/0223829 A1 Patent Application Publication Nov.
    [Show full text]
  • Unit 9-Power Screws.Pdf
    Osakue POWER SCREWS Introduction Power screw is a mechanical screw used for power transmission rather than fastening. A mechanical screw is a cylinder or cone that has a helical ridge called a thread. A helix has one or more turns, so a screw can have several turns. Power screws provide high mechanical advantage; allow a relatively small force to be amplified for application. Common power screws include square, acme, trapezoidal, and buttress power screws. Power screws are commonly used in devices such as hand presses, vices, C-clamps, jack screws, hoisting screws, and lead screws. They are also used as positive positioners for control rod drives nuclear power reactors and compactions for home garbage compactors. Hand presses operate at low speed, jack screws operate less than 2.5 m/min usually, hoisting screws operate between 6 to 12 m/min, and lead screws may operate above 15 m/min. Power Screws The main advantage of a power screw is its large mechanical advantage. It has the ability to greatly magnify an effort load so that a small force can be used to move a much larger load along its axis. In precision and heavy duty applications, balls are placed inside a screw-nut assembly to obtain a ball screw drive. A stream of balls flows in a semicircular groove within the nut-screw unit converting the sliding motion between the threads of the nut and screws into rolling motion. This greatly improves the efficiency of the mechanism. The thread profiles and proportions of these screws are shown in Fig. 1.
    [Show full text]
  • Lead Screws & Nuts
    R DESIGN LEAD SCREWS & NUTS R RECISION NDUSTRIAL OMPONENTS A Range Of Styles / Inch And Metric Sizes PS STYLE THREADS ACME STYLE THREADS FL MOUNTING FLANGE PZ PK PV ANR1 ANR2 ANR3 SERIES SERIES SERIES SERIES SERIES SERIES PIC Design has significantly increased its range PS STYLE THREADS ACME STYLE THREADS of lead screws and nuts to provide users with the Anti-Backlash Nuts Power And Anti-Backlash Nuts most complete line in the industry. Designers are The standard method for taking up backlash is PIC Design offers three Turcite X nuts that are no longer confined to the original Acme lead to bias two nut halves axially using a type of compatible with Acme style lead screws. Each screws ... the new and innovative PS Series compliant spring. Using this method, the nut offers distinct advantages. employs a modified thread form that is designed spring force must be at least as great as the ANR1 Series power nuts are used where a for maximum life and quiet operation when used in load to be moved. conjunction with the patented anti-backlash nuts. range of .003" to .007" axial backlash can The new PS style lead screws use a patented satisfy user requirements. The ANR1 is PIC DESIGN LEAD SCREWS axial take-up mechanism, which effectively puts the most economical. a stiff spacer between the nut halves. By using Lead screws provide an economical solution for ANR2 Series anti-backlash nuts are designed this design, the nut functions independently of the transfer of rotary motion to linear motion. for applications requiring positional accuracy the load, resulting in a low drag torque.
    [Show full text]