CALIBRATED DIVERSITY, TREE TOPOLOGY and the MOTHER of MASS EXTINCTIONS: the LESSON of TEMNOSPONDYLS by MARCELLO RUTA and MICHAEL J

Total Page:16

File Type:pdf, Size:1020Kb

CALIBRATED DIVERSITY, TREE TOPOLOGY and the MOTHER of MASS EXTINCTIONS: the LESSON of TEMNOSPONDYLS by MARCELLO RUTA and MICHAEL J [Palaeontology, Vol. 51, Part 6, 2008, pp. 1261–1288] CALIBRATED DIVERSITY, TREE TOPOLOGY AND THE MOTHER OF MASS EXTINCTIONS: THE LESSON OF TEMNOSPONDYLS by MARCELLO RUTA and MICHAEL J. BENTON Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK; e-mails [email protected]; [email protected] Typescript received 4 June 2007; accepted in revised form 14 January 2008 Abstract: Three family-level cladistic analyses of tem- closer to one another than they are when the observed num- nospondyl amphibians are used to evaluate the impact of ber of families is used; both values are also slightly higher taxonomic rank, tree topology, and sample size on diversity than the Carboniferous estimated diversity. The Guadalu- profiles, origination and extinction rates, and faunal turn- pian–Lopingian value is lower than raw data indicate, reflect- over. Temnospondyls are used as a case study for investigat- ing in part the depauperate land vertebrate diversity from ing replacement of families across the Permo-Triassic the late Cisuralian to the middle Guadalupian (Olson’s gap). boundary and modality of recovery in the aftermath of the The time-calibrated origination and extinction rate trajecto- end-Permian mass extinction. Both observed and inferred ries plot out close to one another and show a peak in the (i.e. tree topology-dependent) values of family diversity have Induan, regardless of the tree used to construct them. Origi- a negligible effect on the shape of the diversity curve. How- nation and extinction trajectories are disjunct in at least ever, inferred values produce both a flattening of the curve some Palaeozoic intervals, and background extinctions exert throughout the Cisuralian and a less pronounced increase in a significant role in shaping temnospondyl diversity in the family diversity from Tatarian through to Induan than do lowermost Triassic. Finally, species-, genus-, and family tra- observed values. Diversity curves based upon counts of gen- jectories consistently reveal a rapid increase in temnospondyl era and species display a clearer distinction between peaks diversity from latest Permian to earliest Triassic as well as a and troughs. We use rarefaction techniques (specifically, rar- decline near the end of the Cisuralian. However, during the efaction of the number of genera and species within families) rest of the Cisuralian family diversity increases slightly and to evaluate the effect of sampling size on the curve of esti- there is no evidence for a steady decline, contrary to previous mated family-level diversity during five time bins (Carbonif- reports. erous; Cisuralian; Guadalupian–Lopingian; Early Triassic; Middle Triassic–Cretaceous). After applying rarefaction, we Key words: cladogram, extinction, diversity, ghost lineages, note that Cisuralian and Early Triassic diversity values are origination, phylogeny, rarefaction. A large proportion of the literature on Phanerozoic dearth of quantitative macroevolutionary studies for the diversity draws from Sepkoski’s (1992, 2002) two monu- vast majority of fossil vertebrate groups (but see Benton mental compendia on families and genera of marine fossil 1985a, b, 1987, 1994, 1995, 1996a, b, 2003, Maxwell and animals. Modifications, additions, and refinements to Benton 1990, Benton and Simms 1995, and Benton and both compendia provide the foundations for analyses of Hitchin 1996). In addition, only a very small number of origination and extinction rates, reconstruction of trajec- papers have addressed specifically large-scale evolutionary tories of taxonomic diversity through time, and quantifi- patterns in early tetrapods (e.g. Pitrat 1973; Benton cation of biotic turnover. The development and 1985b, 1987; Olson 1989; Maxwell 1992; Benton et al. enrichment of databases for macroevolutionary investiga- 2004; Laurin 2004; Ruta et al. 2006; Wagner et al. 2006). tions have a prestigious and long tradition in palaeo- As the most species-rich and widespread of all groups biology. As a result, data on diversity are now available of early tetrapods, temnospondyl amphibians are suitable for several groups (e.g. Benton 1993; see also online for macroevolutionary studies. In an early account of this resources such as The Paleobiology Database: http:// group’s diversity, Carroll (1977) provided a stratigraphic paleodb.org/cgi-bin/bridge.pl and FossilPlot: http:// plot of family ranges, but offered no qualitative or quan- geology.isu.edu/FossilPlot/Index.htm). However, there is a titative frameworks for investigating faunal turnover or ª The Palaeontological Association doi: 10.1111/j.1475-4983.2008.00808.x 1261 1262 PALAEONTOLOGY, VOLUME 51 extinction ⁄ origination rates. More recently, Milner (1990) synonymy to the amount of effort and time required for built a large-scale (albeit not a computer-assisted) cladis- data collection at a low taxonomic level, and from precision tic analysis of family-level relationships for temnospondyls in dating to sampling bias. However, in the case of temno- as a whole. This analysis was employed to assess timing spondyls the number of species is ‘manageable’, not least and magnitude of the main diversification and extinction because recent compendia cover the majority of described events in temnospondyl history as well as patterns of species and include detailed reviews of their synonymy. biogeographic dispersal and ecological partitioning. Dating and sampling problems are certainly more difficult In this paper, we undertake a new analysis of tem- to tackle. However, for the main purposes of the present nospondyl diversity. This study is certainly timely, given paper, the assignment of species to stages will suffice. the large number of temnospondyl species described since Although certain species pose difficulties in this respect (i.e. Milner’s (1990) paper (representing an increase of almost their precise assignment to a stage is dubious), they repre- 20 per cent) and the availability of analytical techniques sent only a small fraction of the total number. As far as for macroevolutionary inference. Specifically, we address sampling is concerned, we assume that the group’s record the following issues: forms an unbiased collection from its entire stratigraphic 1. the impact of different taxonomic ranks on trajectories range. This may seem unwarranted, given the fact that sev- of raw (i.e. observed) diversity; eral temnospondyl assemblages (e.g. in the Carboniferous) 2. the influence of cladogram shape, ghost lineages, and show characteristic ecological fingerprints (see Milner range extensions on these trajectories; 1990). For this reason, their probability of preservation 3. the correlation (if any) between rates of family extinc- would be higher than that of species living in environments tions and originations (i.e. faunal turnover); that are not conducive to preservation. The impact of eco- 4. the effect of sample size on diversity profiles, in partic- logical and ⁄ or biogeographic factors on the trajectories of ular during periods of depauperate taxonomic richness observed diversity will be considered in a separate publica- (especially Olson’s gap; see below); tion (but see also Benton 1985a, b, 1987). 5. the impact of the end-Permian mass extinction on tem- As far as the topology of phylogenetic trees is con- nospondyl diversification near the Palaeozoic-Mesozoic cerned, we seek to assess differences in profiles of family- boundary and the pattern of taxonomic recovery in the level temnospondyl diversity when ghost lineages and aftermath of that extinction. range extensions (e.g. Norell 1992; Smith 1994) are taken Taxonomic rank is an important, yet often neglected into account. To this end, we use three recently published component of any macroevolutionary analysis. Empirical temnospondyl phylogenies. The use of families is dictated work demonstrates that diversity trajectories produced by the fact that species- or genus-level phylogenies for using a variety of ranks may differ to a considerable temnospondyls are not available, despite the number of extent. These differences ultimately result in different cladistic data sets published so far. Only some of these models of diversity expansion and contraction during a data sets have considered a significant proportion of all group’s history, including the fitting of appropriate curves major temnospondyl clades (see Yates and Warren 2000 for assessing patterns of increasing taxonomic growth and Ruta and Bolt 2006); many others (e.g. see Schoch (e.g. see Bambach 1989 and Lane and Benton 2003). The and Rubidge 2005; Damiani et al. 2006; Laurin and Soler- use of different ranks can alter profoundly models of Gijo´n 2006; Witzmann and Schoch 2006 and Schoch recovery in the aftermath of large-scale extinctions, e.g. et al. 2007) have tackled small sections of the tem- by either diluting or exaggerating the magnitude of the nospondyl tree, e.g. to assess the phylogenetic placement latter. Similarly, ranks can impact our perception of rates of a few key species. of originations (e.g. a gradual increase in taxonomic rich- Our use of the expressions ‘range extension’ and ‘ghost ness as opposed to a burst of diversification). lineage’ conform strictly to Smith (1994). A range exten- Jablonski (2007) provided a detailed treatment of the sion of a taxon is the minimum stratigraphic range added scale effect in macroevolutionary studies while Benton and to (or extended below) the earliest occurrence of that taxon Emerson (2007) discussed some problems associated with in order to join an older
Recommended publications
  • New Permian Fauna from Tropical Gondwana
    ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina.
    [Show full text]
  • Limb Ossification in the Paleozoic Branchiosaurid Apateon (Temnospondyli) and the Early Evolution of Preaxial Dominance in Tetrapod Limb Development
    EVOLUTION & DEVELOPMENT 9:1, 69 –75 (2007) Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development Nadia B. Fro¨bisch,a,Ã Robert L. Carroll,a and Rainer R. Schochb aRedpath Museum, McGill University, 859 Sherbrooke Street West, Montreal H3A 2K6, Canada bStaatliches Museum fu¨r Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY Despite the wide range of shapes and sizes that divergent evolution of these two pathways and its causes are accompany a vast variety of functions, the development of still not understood. Based on an extensive ontogenetic series tetrapod limbs follows a conservative pattern of de novo we investigated the pattern of limb development of the 300 Ma condensation, branching, and segmentation. Development of old branchiosaurid amphibian Apateon. This revealed a the zeugopodium and digital arch typically occurs in a posterior preaxial dominance in limb development that was previously to anterior sequence, referred to as postaxial dominance, with believed to be unique and derived for modern salamanders. a digital sequence of 4–3–5–2–1. The only exception to this The Branchiosauridae are favored as close relatives of pattern in all of living Tetrapoda can be found in salamanders, extant salamanders in most phylogenetic hypotheses of the which display a preaxial dominance in limb development, a de highly controversial origins and relationships of extant novo condensation of a basale commune (distal carpal/tarsal amphibians. The findings provide new insights into the 112) and a precoccial development of digits I and II.
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]
  • Heber Den Archegosaurus Der Stciiikohleiiforntatioii. Wenn Auch
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Palaeontographica - Beiträge zur Naturgeschichte der Vorzeit Jahr/Year: 1851 Band/Volume: 1 Autor(en)/Author(s): Meyer Hermann Christian Erich von Artikel/Article: Ueber den Archegosaurus der Steinkohlenformation. 209-215 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Heber den Archegosaurus der Stciiikohleiiforntatioii. Von Hermann von Meyer. Die Nachrichten über das Vorkommen von Reptilien in Gebilden älter als die Formation des Zechsteins hatten sich bei genauerer Prüfung immer als unhaltbar bewiesen. Man glaubte sich daher um so mehr berechtigt, anzunehmen, dass im Zechstein die ältesten Reptilien begraben lägen, als während der Versammlung der Naturforscher in Mainz Dr. Gergens und Alex. Braun mir eine Wirbelthier- Versteinerung aus dem der Steinkohlenformation angehörigen, durch seine Fische berühmten Schieferthon von Münster- Appel in der bayerschen Pfalz vorlegten, deren Beschaffenheit mehr auf ein Wirbelthier mit Füssen als auf einen Fisch schliessen Hess. Dieses merkwürdige kleine Geschöpf habe ich Anfangs 1844, es Apateon pedestris nennend, beschrieben (Jahrb. f. Min. 1844. S. 336), später aber in den Palaeontographicis (1. S. 152. Taf. 20. Fig. t.) dargelegt. Drei Jahre darauf gelang es dem Berghauptmann v. Dechen in den Sphärosideritnieren der Steinkohlenformation zu Lebach im Saarbrücken'schen, woraus zuvor ebenfalls nur Fische bekannt waren , Ueberreste zu entdecken , welche an die Gegenwart von Sauriern in diesem Ge- bilde glauben Hessen. Mit dem zu Münster-Appel gefundenen Thier stimmten sie nicht überein. Die erste Nachricht darüber theilte Goldfuss in der Niederrheinischen Gesellschaft für Natur- und Heilkunde in Bonn am 18. Februar 1847 mit.
    [Show full text]
  • A Review of Palaeozoic and Mesozoic Tetrapods from Greenland
    A review of Palaeozoic and Mesozoic tetrapods from Greenland MARCO MARZOLA, OCTÁVIO MATEUS, JESPER MILÀN & LARS B. CLEMMENSEN Marzola, M., Mateus, O., Milàn, J. & Clemmensen, L.B. 2018. A review of Palaeozoic and Mesozoic tetrapods from Greenland. © 2018 by Bulletin of the Geological Society of Denmark, Vol. 66, pp. 21–46. ISSN 2245-7070. (www.2dgf.dk/publikationer/bulletin). https://doi.org/10.37570/bgsd-2018-66-02 This article presents a synthesis of Palaeozoic and Mesozoic fossil tetrapods from Greenland, includ- ing an updated review of the holotypes and a new photographic record of the main specimens. All fossil tetrapods found are from East Greenland, with at least 30 different known taxa: five stem tetra- pods (Acanthostega gunnari, Ichthyostega eigili, I. stensioi, I. watsoni, and Ymeria denticulata) from the Late Received 1 December 2016 Devonian of the Aina Dal and Britta Dal Formations; four temnospondyl amphibians (Aquiloniferus Accepted in revised form kochi, Selenocara groenlandica, Stoschiosaurus nielseni, and Tupilakosaurus heilmani) from the Early Triassic 27 October 2017 of the Wordie Creek Group; two temnospondyls (Cyclotosaurus naraserluki and Gerrothorax cf. pulcher- Published online rimus), one testudinatan (cf. Proganochelys), two stagonolepids (Aetosaurus ferratus and Paratypothorax 3 March 2018 andressorum), the eudimorphodontid Arcticodactylus, undetermined archosaurs (phytosaurs and both sauropodomorph and theropod dinosaurs), the cynodont Mitredon cromptoni, and three mammals (Ha- ramiyavia clemmenseni, Kuehneotherium, and cf. ?Brachyzostrodon), from the Late Triassic of the Fleming Fjord Formation; one plesiosaur from the Early Jurassic of the Kap Stewart Formation; one plesiosaur and one ichthyosaur from the Late Jurassic of the Kap Leslie Formation, plus a previously unreported Late Jurassic plesiosaur from Kronprins Christian Land.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • And Early Jurassic Sediments, and Patterns of the Triassic-Jurassic
    and Early Jurassic sediments, and patterns of the Triassic-Jurassic PAUL E. OLSEN AND tetrapod transition HANS-DIETER SUES Introduction parent answer was that the supposed mass extinc- The Late Triassic-Early Jurassic boundary is fre- tions in the tetrapod record were largely an artifact quently cited as one of the thirteen or so episodes of incorrect or questionable biostratigraphic corre- of major extinctions that punctuate Phanerozoic his- lations. On reexamining the problem, we have come tory (Colbert 1958; Newell 1967; Hallam 1981; Raup to realize that the kinds of patterns revealed by look- and Sepkoski 1982, 1984). These times of apparent ing at the change in taxonomic composition through decimation stand out as one class of the great events time also profoundly depend on the taxonomic levels in the history of life. and the sampling intervals examined. We address Renewed interest in the pattern of mass ex- those problems in this chapter. We have now found tinctions through time has stimulated novel and com- that there does indeed appear to be some sort of prehensive attempts to relate these patterns to other extinction event, but it cannot be examined at the terrestrial and extraterrestrial phenomena (see usual coarse levels of resolution. It requires new fine- Chapter 24). The Triassic-Jurassic boundary takes scaled documentation of specific faunal and floral on special significance in this light. First, the faunal transitions. transitions have been cited as even greater in mag- Stratigraphic correlation of geographically dis- nitude than those of the Cretaceous or the Permian junct rocks and assemblages predetermines our per- (Colbert 1958; Hallam 1981; see also Chapter 24).
    [Show full text]
  • Early Vertebrate Evolution Follow the Footprints and Mind the Gaps: a New Look at the Origin of Tetrapods Per E
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109, 115–137, 2019 (for 2018) Early Vertebrate Evolution Follow the footprints and mind the gaps: a new look at the origin of tetrapods Per E. AHLBERG Department of Organismal Biology, Uppsala University, Norbyva¨gen 18A, 752 36 Uppsala, Sweden. Email: [email protected] ABSTRACT: The hypothesis that tetrapods evolved from elpistostegids during the Frasnian, in a predominantly aquatic context, has been challenged by the discovery of Middle Devonian tetrapod trackways predating the earliest body fossils of both elpistostegids and tetrapods. Here I present a new hypothesis based on an overview of the trace fossil and body fossil evidence. The trace fossils demonstrate that tetrapods were capable of performing subaerial lateral sequence walks before the end of the Middle Devonian. The derived morphological characters of elpistostegids and Devonian tetrapods are related to substrate locomotion, weight support and aerial vision, and thus to terres- trial competence, but the retention of lateral-line canals, gills and fin rays shows that they remained closely tied to the water. Elpistostegids and tetrapods both evolved no later than the beginning of the Middle Devonian. The earliest tetrapod records come from inland river basins, sabkha plains and ephemeral coastal lakes that preserve few, if any, body fossils; contemporary elpistostegids occur in deltas and the lower reaches of permanent rivers where body fossils are preserved. During the Frasnian, elpistostegids disappear and these riverine-deltaic environments are colonised by tetrapods. This replacement has, in the past, been misinterpreted as the origin of tetrapods. KEY WORDS: body fossils, Devonian, terrestrialisation, trackways, vertebrates.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]
  • A New Species of Cyclotosaurus (Stereospondyli, Capitosauria) from the Late Triassic of Bielefeld, NW Germany, and the Intrarelationships of the Genus
    Foss. Rec., 19, 83–100, 2016 www.foss-rec.net/19/83/2016/ doi:10.5194/fr-19-83-2016 © Author(s) 2016. CC Attribution 3.0 License. A new species of Cyclotosaurus (Stereospondyli, Capitosauria) from the Late Triassic of Bielefeld, NW Germany, and the intrarelationships of the genus Florian Witzmann1,2, Sven Sachs3,a, and Christian J. Nyhuis4 1Department of Ecology and Evolutionary Biology, Brown University, Providence, G-B204, RI 02912, USA 2Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany 3Naturkundemuseum Bielefeld, Abteilung Geowissenschaften, Adenauerplatz 2, 33602 Bielefeld, Germany 4Galileo-Wissenswelt, Mummendorferweg 11b, 23769 Burg auf Fehmarn, Germany aprivate address: Im Hof 9, 51766 Engelskirchen, Germany Correspondence to: Florian Witzmann (fl[email protected]; fl[email protected]) Received: 19 January 2016 – Revised: 11 March 2016 – Accepted: 14 March 2016 – Published: 23 March 2016 Abstract. A nearly complete dermal skull roof of a capi- clotosaurus is the sister group of the Heylerosaurinae (Eo- tosaur stereospondyl with closed otic fenestrae from the mid- cyclotosaurus C Quasicyclotosaurus). Cyclotosaurus buech- dle Carnian Stuttgart Formation (Late Triassic) of Bielefeld- neri represents the only unequivocal evidence of Cycloto- Sieker (NW Germany) is described. The specimen is as- saurus (and of a cyclotosaur in general) in northern Germany. signed to the genus Cyclotosaurus based on the limited con- tribution of the frontal to the orbital margin via narrow lat- eral processes. A new species, Cyclotosaurus buechneri sp. nov., is erected based upon the following unique combina- 1 Introduction tion of characters: (1) the interorbital distance is short so that the orbitae are medially placed (shared with C.
    [Show full text]