Enumeration of Non-Orientable 3-Manifolds Using Face Pairing Graphs and Union-Find∗

Total Page:16

File Type:pdf, Size:1020Kb

Enumeration of Non-Orientable 3-Manifolds Using Face Pairing Graphs and Union-Find∗ Enumeration of non-orientable 3-manifolds using face pairing graphs and union-find∗ Benjamin A. Burton Author’s self-archived version Available from http://www.maths.uq.edu.au/~bab/papers/ Abstract Drawing together techniques from combinatorics and computer science, we improve the census algorithm for enumerating closed minimal P2-irreducible 3-manifold triangulations. In particular, new constraints are proven for face pairing graphs, and pruning techniques are improved using a modification of the union-find algorithm. Using these results we catalogue all 136 closed non-orientable P2-irreducible 3-manifolds that can be formed from at most ten tetrahedra. 1 Introduction With recent advances in computing power, topologists have been able to construct exhaustive tables of small 3-manifold triangulations, much like knot theorists have constructed exhaustive tables of simple knot projections. Such tables are valuable sources of data, but they suffer from the fact that enormous amounts of computer time are required to generate them. Where knot tables are often limited by bounding the number of crossings in a knot pro- jection, tables of 3-manifolds generally limit the number of tetrahedra used in a 3-manifold triangulation. A typical table (or census) of 3-manifolds lists all 3-manifolds of a particular type that can be formed from n tetrahedra or fewer. Beyond their generic role as a rich source of examples, tables of this form have a number of specific uses. They still offer the only general means for proving that a triangulation is minimal (i.e., uses as few tetrahedra as possible), much in the same way as knot tables are used to calculate crossing number. Moreover, a detailed analysis of these tables can offer insight into the combinatorial structures of minimal triangulations, as seen for example by the structural observations of Matveev [20], Martelli and Petronio [17] and Burton [8]. Unfortunately the scope of such tables is limited by the difficulty of generating them. In general, a census of triangulations formed from ≤ n tetrahedra requires computing time at least exponential in n. In the case of closed 3-manifold triangulations, results are only known for ≤ 11 tetrahedra in the orientable case and ≤ 8 tetrahedra in the non-orientable case. These results are particularly sparse in the non-orientable case — only 18 distinct manifolds are found, all of which are graph manifolds [7]. Clearly there is more to be learned by extending the existing censuses to higher numbers of tetrahedra. Due to the heavy computational requirements however, this requires significant improvements in the algorithms used to generate the census data. Such improvements form the main subject of this paper. We restrict our attention here to closed 3-manifold triangulations. In the orientable case, successive tables have been generated by Matveev [20], Ovchinnikov, Martelli and Petronio [15], Martelli [14] and then Matveev again with 11 tetrahedra [21]. For non-orientable manifolds, ∗This project was supported by the Victorian Partnership for Advanced Computing e-Research Program Grant Scheme. 1 tabulation begins with Amendola and Martelli [2, 3] and is continued by Burton [8, 7] up to 8 tetrahedra. The contributions of this paper are the following: • Several improvements to the algorithm for generating census data, some of which increase the speed by orders of magnitude; • An extension of the closed non-orientable census from 8 tetrahedra to 10 tetrahedra; • A verification of previous closed orientable census results for up to 10 tetrahedra, and an extension of these results from a census of manifolds to a census of all minimal triangulations. The algorithmic improvements are divided into two broad categories. The first set of results relate to face pairing graphs, which are 4-valent graphs describing which tetrahedron faces are identified to which within a triangulation. The second set is based upon the union- find algorithm, which is a well-known method for finding connected components in a graph. Here the union-find algorithm is modified to support backtracking, and to efficiently monitor properties of vertex and edge links within a triangulation. All computational work was performed using the topological software package Regina [4, 6]. Census generation forms only a small part of Regina, which is a larger software package for performing a variety of tasks in 3-manifold topology. The software is released under the GNU General Public License, and may be freely downloaded from http://regina.sourceforge. net/. The bulk of this paper is devoted to improving the census algorithm. Section 2 begins with the precise census constraints, and follows with an overview of how a census algorithm is structured. In Section 3 we present a series of preliminary results, describing properties of minimal triangulations that will be required in later sections. Section 4 offers the first round of algorithmic improvements, based upon the analysis of face pairing graphs. A more striking set of improvements is made in Section 5, in which a modified union-find algorithm is used to greatly reduce the search space. Both Sections 4 and 5 also include empirical results in which the effectiveness of these improvements is measured. The improvements of Sections 4 and 5 have led to new closed census results, as outlined above. Section 6 summarises these new results, with a focus on the extension of the closed non-orientable census from 8 to 10 tetrahedra. A full list of non-orientable census manifolds is included in the appendix. 2 Overview of the Census Algorithm As is usual for a census of closed 3-manifolds, we restrict our attention to manifolds with the following properties: • Closed: The 3-manifold is compact, with no boundary and no cusps. • P2-irreducible: The 3-manifold contains no embedded two-sided projective planes, and every embedded 2-sphere bounds a ball. The additional constraint of P2-irreducibility allows us to focus on the most “fundamental” manifolds — the properties of larger manifolds are often well understood in terms of their P2- irreducible constituents. Recall that we are not just enumerating 3-manifolds, but also their triangulations. Through- out this paper we consider a triangulation to be a finite collection of n tetrahedra, where some or all of the 4n tetrahedron faces are affinely identified in pairs. For the census we focus only on triangulations with the following additional property: • Minimal: The triangulation uses as few tetrahedra as possible. That is, the underlying 3-manifold cannot be triangulated using a smaller number of tetrahedra. This minimality constraint is natural for a census, and is used throughout the literature. Note that a 3-manifold may have many different minimal triangulations, though of course all of these triangulations must use the same number of tetrahedra. Minimal triangulations are tightly related to the Matveev complexity of a manifold [19]. Matveev defines complexity in terms of special spines, and it has been proven by Matveev in 2 the orientable case and Martelli and Petronio in the non-orientable case [16] that, with the 3 3 2 exceptions of S , RP and L3,1, the Matveev complexity of a closed P -irreducible 3-manifold is precisely the number of tetrahedra in its minimal triangulation(s). 2.1 Stages of the Algorithm There are two stages involved in constructing a census of 3-manifold triangulations: the gen- eration of triangulations, and then the analysis of these triangulations. 1. Generation: The generation stage typically involves a long computer search, in which tetrahedra are pieced together in all possible ways to form 3-manifold triangulations that might satisfy our census constraints. The result of this search is a large set of triangulations, guaranteed to include all of the triangulations that should be in the census. There are often unwanted triangulations also (for instance, triangulations that are non-minimal, or that represent reducible manifolds). This is not a problem; these unwanted triangulations will be discarded in the analysis stage. The generation of triangulations is entirely automated, but it is also extremely time- consuming — it may take seconds or centuries, depending upon the size of the census. 2. Analysis: Once the generation stage has produced a raw set of triangulations, these must be refined into a final census. This includes verifying that each triangulation is minimal and P2-irreducible (and throwing away those triangulations that are not). It also involves grouping triangulations into classes that represent the same 3-manifold, and identifying these 3-manifolds. Analysis is much faster than generation, but it typically requires a mixture of automa- tion and human involvement. Techniques include the analysis of invariants and normal surfaces, combinatorial analysis of the triangulation structures, and applying elementary moves that change triangulations without altering their underlying 3-manifolds. The generation stage is the critical bottleneck, due to the vast number of potential trian- gulations that can be formed from a small number of tetrahedra. Suppose we are searching for triangulations that can be formed using n tetrahedra. Even assuming that we know which tetrahedron faces are to be joined with which, each pair of faces can be identified according to one of six possible rotations or reflections, giving rise to 62n possible triangulations in total. For 10 tetrahedra, this figure is larger than 1015. It is clear then why existing census data is limited to the small bounds that have been reached to date. It should be noted that for an orientable census, the figure 62n becomes closer to 3n6n. This is because for a little over half the faces only three of the six rotations or reflections will preserve orientation. It is partly for this reason that the orientable census has consistently been further advanced in the literature than the non-orientable census. Nevertheless, for 10 tetrahedra this figure is still larger than 1012, a hefty workload indeed.
Recommended publications
  • EXOTIC SPHERES and CURVATURE 1. Introduction Exotic
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 4, October 2008, Pages 595–616 S 0273-0979(08)01213-5 Article electronically published on July 1, 2008 EXOTIC SPHERES AND CURVATURE M. JOACHIM AND D. J. WRAITH Abstract. Since their discovery by Milnor in 1956, exotic spheres have pro- vided a fascinating object of study for geometers. In this article we survey what is known about the curvature of exotic spheres. 1. Introduction Exotic spheres are manifolds which are homeomorphic but not diffeomorphic to a standard sphere. In this introduction our aims are twofold: First, to give a brief account of the discovery of exotic spheres and to make some general remarks about the structure of these objects as smooth manifolds. Second, to outline the basics of curvature for Riemannian manifolds which we will need later on. In subsequent sections, we will explore the interaction between topology and geometry for exotic spheres. We will use the term differentiable to mean differentiable of class C∞,and all diffeomorphisms will be assumed to be smooth. As every graduate student knows, a smooth manifold is a topological manifold that is equipped with a smooth (differentiable) structure, that is, a smooth maximal atlas. Recall that an atlas is a collection of charts (homeomorphisms from open neighbourhoods in the manifold onto open subsets of some Euclidean space), the domains of which cover the manifold. Where the chart domains overlap, we impose a smooth compatibility condition for the charts [doC, chapter 0] if we wish our manifold to be smooth. Such an atlas can then be extended to a maximal smooth atlas by including all possible charts which satisfy the compatibility condition with the original maps.
    [Show full text]
  • Examples of Bireducible Dehn Fillings
    Pacific Journal of Mathematics EXAMPLES OF BIREDUCIBLE DEHN FILLINGS James A. Hoffman and Daniel Matignon Volume 209 No. 1 March 2003 PACIFIC JOURNAL OF MATHEMATICS Vol. 209, No. 1, 2003 EXAMPLES OF BIREDUCIBLE DEHN FILLINGS James A. Hoffman and Daniel Matignon If an irreducible manifold M admits two Dehn fillings along distinct slopes each filling resulting in a reducible manifold, then we call these bireducible Dehn fillings. The first example of bireducible Dehn fillings is due to Gordon and Litherland. More recently, Eudave-Mu˜noz and Wu presented the first in- finite family of manifolds which admit bireducible Dehn fill- ings. We present another infinite family of hyperbolic man- ifolds which admit bireducible Dehn fillings. The manifolds obtained by the fillings are always the connect sum of two lens spaces. 0. Introduction. Let M be an orientable 3-manifold with toroidal boundary T . Given a slope r on T , the Dehn filling of M along r, denoted by M(r), is the manifold obtained by identifying T with the boundary of a solid torus V so that r bounds a meridian disk in V . In this paper, we are especially interested in those Dehn fillings which produce reducible manifolds. Recall that a manifold is reducible if it contains an essential 2-sphere, that is, a 2-sphere which does not bound a 3-ball. If an irreducible manifold M admits two Dehn fillings along distinct slopes each filling resulting in a reducible manifold, then we call these bireducible Dehn fillings. The first example of bireducible Dehn fillings is due to Gordon and Lither- land [GLi].
    [Show full text]
  • Effective Actions of the Unitary Group on Complex Manifolds
    Canad. J. Math. Vol. 54 (6), 2002 pp. 1254–1279 Effective Actions of the Unitary Group on Complex Manifolds A. V. Isaev and N. G. Kruzhilin Abstract. We classify all connected n-dimensional complex manifolds admitting effective actions of the unitary group Un by biholomorphic transformations. One consequence of this classification is a characterization of Cn by its automorphism group. 0 Introduction We are interested in classifying all connected complex manifolds M of dimension n ≥ 2 admitting effective actions of the unitary group Un by biholomorphic trans- formations. It is not hard to show that if dim M < n, then an action of Un by biholo- morphic transformations cannot be effective on M, and therefore n is the smallest possible dimension of M for which one may try to obtain such a classification. One motivation for our study was the following question that we learned from S. Krantz: assume that the group Aut(M) of all biholomorphic automorphisms of M and the group Aut(Cn) of all biholomorphic automorphisms of Cn are isomorphic as topological groups equipped with the compact-open topology; does it imply that M is biholomorphically equivalent to Cn? The group Aut(Cn) is very large (see, e.g., [AL]), and it is not clear from the start what automorphisms of Cn one can use to approach the problem. The isomorphism between Aut(M) and Aut(Cn) induces a continuous effective action on M of any subgroup G ⊂ Aut(Cn). If G is a Lie group, then this action is in fact real-analytic. We consider G = Un which, as it turns out, results in a very short list of manifolds that can occur.
    [Show full text]
  • Topology of Energy Surfaces and Existence of Transversal Poincaré Sections
    Topology of energy surfaces and existence of transversal Poincar´esections Alexey Bolsinova Holger R. Dullinb Andreas Wittekb a) Department of Mechanics and Mathematics Moscow State University Moscow 119899, Russia b) Institut f¨ur Theoretische Physik Universit¨at Bremen Postfach 330440 28344 Bremen, Germany Email: [email protected] February 1996 Abstract Two questions on the topology of compact energy surfaces of natural two degrees of freedom Hamiltonian systems in a magnetic field are discussed. We show that the topology of this 3-manifold (if it is not a unit tangent bundle) is uniquely determined by the Euler characteristic of the accessible region in arXiv:chao-dyn/9602023v1 29 Feb 1996 configuration space. In this class of 3-manifolds for most cases there does not exist a transverse and complete Poincar´esection. We show that there are topological obstacles for its existence such that only in the cases of S1 × S2 and T 3 such a Poincar´esection can exist. 1 Introduction The question of the topology of the energy surface of Hamiltonian systems was al- ready treated in the 20’s by Birkhoff and Hotelling [8, 9]. Birkhoff proposed the “streamline analogy” [3], i.e. the idea that the flow of a Hamiltonian system on the 3-manifold could be viewed as the streamlines of an incompressible fluid evolving in this manifold. Extending the work of Poincar´e[14] he noted that it might be difficult 1 to find a transverse Poincar´esection which is complete (i.e. for which every stream- line starting from the surface of section returns to it) [1].
    [Show full text]
  • Mahito Kobayashi a SURVEY on POLYGONAL
    DEMONSTRATE MATHEMATICA Vol. XLIII No 2 2010 Mahito Kobayashi A SURVEY ON POLYGONAL PORTRAITS OF MANIFOLDS Abstract. Planar portraits are geometric representations of smooth manifolds de- fined by their generic maps into the plane. A simple subclass called the polygonal portraits is introduced, their realisations, and relations of their shapes to the topology of source manifolds are discussed. Generalisations and analogies of the results to other planar por- traits are also mentioned. A list of manifolds which possibly admit polygonal portraits is given, up to diffeomorphism and up to homotopy spheres. This article is intended to give a summary on our research on the topic, and hence precise proofs will be given in other papers. 1. Introduction For a smooth manifold M of dimension two or more, its planar portrait through / : M —• R2 is the pair V = (/(M), /(S/)), up to diffeomorphism of R2, where / is a generic map and Sf is the set of singular points. The second component, referred to as the critical loci of V or /, is a plane curve possibly disconnected and possibly with a finite number of (ordinary) cusps and normal crossings. A planar portrait can be regarded a natural, geometric representation of the manifold, but its relation to the topology of M is not straight and few is known about it. One can hence pose two basic problems as below. (A) What topological properties of M are carried to a planar portrait (and how)? (B) Which compact set, bounded and separated into regions by a plane curve, can be a planar portrait of a manifold? In this article, we introduce a special class of planar portraits named the polygonal portraits, and approach to these problems, especially to (B).
    [Show full text]
  • Complexity of Geometric Three-Manifolds
    Complexity of geometric three-manifolds Bruno Martelli Carlo Petronio July 26, 2021 Abstract We compute for all orientable irreducible geometric 3-manifolds certain com- plexity functions that approximate from above Matveev’s natural complexity, known to be equal to the minimal number of tetrahedra in a triangulation. We can show that the upper bounds on Matveev’s complexity implied by our com- putations are sharp for thousands of manifolds, and we conjecture they are for infinitely many, including all Seifert manifolds. Our computations and estimates 3 apply to all the Dehn fillings of M61 (the complement of the three-component chain-link, conjectured to be the smallest triply cusped hyperbolic manifold), whence to infinitely many among the smallest closed hyperbolic manifolds. Our computations are based on the machinery of the decomposition into ‘bricks’ of irreducible manifolds, developed in a previous paper. As an application of our results we completely describe the geometry of all 3-manifolds of complexity up to 9. MSC (2000): 57M27 (primary), 57M50 (secondary). Contents 1 Complexity computations 4 2 Decomposition of manifolds into bricks 12 arXiv:math/0303249v1 [math.GT] 20 Mar 2003 3 Slopes and θ-graphs on the torus 17 4 Complexity of atoroidal manifolds: generalities and Seifert case 24 5 Complexity of hyperbolic manifolds 37 6 Complexity of Seifert manifolds and torus bundles 46 7 Tables of small manifolds 56 1 Introduction The complexity c(M) of a closed orientable 3-manifold M was defined in [11] as the minimal number of vertices of a simple spine of M. In the same paper it was shown that c is additive under connected sum and that, if M is irreducible, c(M) equals the minimal number of tetrahedra in a triangulation of M, unless M is S3, RP3, or L3,1.
    [Show full text]
  • Spines and Topology of Thin Riemannian Manifolds 1
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 355, Number 12, Pages 4933{4954 S 0002-9947(03)03163-5 Article electronically published on July 28, 2003 SPINES AND TOPOLOGY OF THIN RIEMANNIAN MANIFOLDS STEPHANIE B. ALEXANDER AND RICHARD L. BISHOP Abstract. Consider Riemannian manifolds M for which the sectional curva- ture of M and second fundamental form of the boundary B are bounded above by one in absolute value. Previously we proved that if M has sufficiently small inradius (i.e. all points are sufficiently close to the boundary), then the cut locus of B exhibits canonical branching behavior of arbitrarily low branching number. In particular, if M is thin in the sense that its inradius is less than a certain universal constant (known to lie between :108 and :203), then M collapses to a triply branched simple polyhedral spine. We use a graphical representation of the stratification structure of such a collapse, and relate numerical invariants of the graph to topological invariants of M when B is simply connected. In particular, the number of connected strata of the cut locus is a topological invariant. When M is 3-dimensional and compact, M has complexity 0 in the sense of Matveev, and is a connected sum of p copies of the real projective space P 3, t copies chosen from the lens spaces L(3; 1), and ` handles chosen from S2 × S1 or S2×~ S1,withβ 3-balls removed, where p + t + ` + β ≥ 2. Moreover, we construct a thin metric for every graph, and hence for every homeomorphism type on the list.
    [Show full text]
  • Special Geometric Structures on Riemannian Manifolds
    Special Geometric Structures on Riemannian Manifolds Habilitationsschrift vorgelegt an der Fakult¨atf¨urMathematik der Universit¨atRegensburg von Mihaela Pilca 11. Januar 2016 2 Mentoren: Prof. Dr. Bernd Ammann, Universit¨atRegensburg Prof. Dr. Helga Baum, Humboldt-Universit¨atzu Berlin Prof. Dr. Simon Salamon, King's College London Aktuelle Adresse: Fakult¨atf¨urMathematik Universit¨atRegensburg D-93040 Regensburg Webseite: http://www.mathematik.uni-regensburg.de/pilca E-Mail: [email protected] 3 Contents Introduction 5 1 Homogeneous Clifford structures 19 1.1 Introduction . 19 1.2 Preliminaries . 21 1.3 The isotropy representation . 23 1.4 Homogeneous Clifford Structures . 32 2 Homogeneous almost quaternion-Hermitian manifolds 41 2.1 Introduction . 41 2.2 Preliminaries . 43 2.3 The classification . 44 A Root systems . 51 3 Eigenvalue Estimates of the spinc Dirac operator and harmonic forms on K¨ahler{Einsteinmanifolds 55 1 Introduction . 55 2 Preliminaries and Notation . 58 3 Eigenvalue Estimates of the spinc Dirac operator on K¨ahler{Einsteinman- ifolds . 63 4 Harmonic forms on limiting K¨ahler-Einsteinmanifolds . 70 4 The holonomy of locally conformally K¨ahlermetrics 77 1 Introduction . 77 2 Preliminaries on lcK manifolds . 80 3 Compact Einstein lcK manifolds . 82 4 The holonomy problem for compact lcK manifolds . 86 5 K¨ahlerstructures on lcK manifolds . 92 6 Conformal classes with non-homothetic K¨ahlermetrics . 95 5 Toric Vaisman Manifolds 107 1 Introduction . 107 2 Preliminaries . 108 3 Twisted Hamiltonian Actions on lcK manifolds . 112 4 Toric Vaisman manifolds . 115 5 Toric Compact Regular Vaisman manifolds . 122 6 Remarks on the product of harmonic forms 129 1 Introduction .
    [Show full text]
  • Homotopy Equivalences of 3-Manifolds and Deformation Theory of Kleinian Groups
    Homotopy Equivalences of 3-Manifolds and Deformation Theory of Kleinian Groups Richard D. Canary Darryl McCullough Author address: Department of Mathematics University of Michigan Ann Arbor, MI 48109 E-mail address: [email protected] URL: www.math.lsa.umich.edu/ canary/ e Department of Mathematics University of Oklahoma Norman, OK 73019 E-mail address: [email protected] URL: www.math.ou.edu/ dmccullough/ e Contents Preface ix Chapter 1. Introduction 1 1.1. Motivation 1 1.2. The main theorems for Haken 3-manifolds 3 1.3. The main theorems for reducible 3-manifolds 8 1.4. Examples 9 Chapter 2. Johannson's Characteristic Submanifold Theory 15 2.1. Fibered 3-manifolds 16 2.2. Boundary patterns 20 2.3. Admissible maps and mapping class groups 23 2.4. Essential maps and useful boundary patterns 28 2.5. The classical theorems 35 2.6. Exceptional fibered 3-manifolds 38 2.7. Vertical and horizontal surfaces and maps 39 2.8. Fiber-preserving maps 41 2.9. The characteristic submanifold 48 2.10. Examples of characteristic submanifolds 51 2.11. The Classification Theorem 57 2.12. Miscellaneous topological results 59 Chapter 3. Relative Compression Bodies and Cores 65 3.1. Relative compression bodies 66 3.2. Minimally imbedded relative compression bodies 69 3.3. The maximal incompressible core 71 3.4. Normally imbedded relative compression bodies 73 3.5. The normal core and the useful core 74 Chapter 4. Homotopy Types 77 4.1. Homotopy equivalences preserve usefulness 77 4.2. Finiteness of homotopy types 83 Chapter 5. Pared 3-Manifolds 87 5.1.
    [Show full text]
  • A New Combinatorial Class of 3–Manifold Triangulations 1
    ASIAN J. MATH. c 2017 International Press Vol. 21, No. 3, pp. 543–570, June 2017 007 A NEW COMBINATORIAL CLASS OF 3–MANIFOLD TRIANGULATIONS∗ † ‡ FENG LUO AND STEPHAN TILLMANN Abstract. We define a new combinatorial class of triangulations of closed 3–manifolds, satisfying a weak version of 0–efficiency combined with a weak version of minimality, and study them using twisted squares. As an application, we obtain strong restrictions on the topology of a 3–manifold from the existence of non-smooth maxima of the volume function on the space of circle-valued angle structures. Key words. 3-manifold, triangulation, 0-efficient, circle-valued angle structure. AMS subject classifications. 57M25, 57N10. 1. Introduction. In computational topology, it is a difficult problem to certify that a given triangulation of a closed, irreducible, orientable 3–manifold is minimal. Here, the term triangulation includes semi-simplicial or singular triangulations. The difficulty mainly stems from the fact that on the one hand, the current computer generated censuses are limited in size (see [10, 3]), and on the other hand, it is difficult to find good lower bounds for the minimal number of tetrahedra (see [9, 6]). For many algorithms using 3–manifold triangulations, the 0–efficient triangulations due to Jaco and Rubinstein [4] have been established as a suitable platform. However, certifying that a given triangulation is 0–efficient involves techniques from linear programming. This paper introduces a new class of triangulations satisfying a weak version of 0– efficiency combined with a weak version of minimality. The weak version of minimality (face-pair-reduced) is that certain simplification moves, which can be determined from the 2–skeleton, are not possible.
    [Show full text]
  • An Algorithmic Approach to Manifolds
    The Mathematica®Journal An Algorithmic Approach to Manifolds An Analytical Approach to Form Modeling As an Introduction to Computational Morphology Rémi Barrère An algorithmic approach to manifolds is presented, based on an object ap- proach to the parametric plotting commands. The initial purpose was to blend geometric and symbolic aspects, so as to equip computer-assisted de- sign (CAD) with symbolic capabilities. Nevertheless, this investigation aims more generally at providing a uniform treatment of analytic geometry and field analysis, in view of applications to physics, system modeling, and morphology. After presenting the data structure, the core of this article describes a range of operators for manipulating manifolds. It stresses their potential use in shape design and scene description, in particular their ability to su- persede several graphics packages. As such, the data type constitutes the foundation of a computational morphology. Then, various extensions are discussed: fields, mesh generation for finite element software, and the prospect of extending the vector analysis package, with emphasis on ten- sors and differential forms. ‡ Introduction Computer algebra and symbolic programming have introduced analytical capa- bilities into many areas of scientific computing, such as discrete systems, algebra and summation, calculus, and differential equations. Nevertheless, little benefit has been gained in shape design. Research in that domain has stimulated the evolution of computer-assisted design (CAD), but, so far, these tools have included little or no symbolic capabilities, and most CAD software is still developed with procedural languages and numerical methods. Besides, geometric problems have been tackled so far mainly by means of algebraic or theorem proving methods [1], thus leading to an underdevelopment of analytical methods.
    [Show full text]
  • Professor Maite Lozano and Universal Links
    Professor Maria Teresa Lozano and universal links Enrique Artal, Antonio F. Costa and Milagros Izquierdo The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149690 N.B.: When citing this work, cite the original publication. The original publication is available at www.springerlink.com: Artal, E., Costa, A. F., Izquierdo, M., (2018), Professor Maria Teresa Lozano and universal links, REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 112(3), 615-620. https://doi.org/10.1007/s13398-017-0446-z Original publication available at: https://doi.org/10.1007/s13398-017-0446-z Copyright: Springer Verlag (Germany) http://www.springerlink.com/?MUD=MP A correction of this article is available at: https://doi.org/10.1007/s13398-017-0468-6 Professor Maite Lozano and universal links Enrique Artal Antonio F. Costa Milagros Izquierdo September 5, 2017 Mar´ıaTeresa, Maite, Lozano is a great person and mathematician, in these pages we can only give a very small account of her results trying to resemble her personality. We will focus our attention only on a few of the facets of her work, mainly in collaboration with Mike Hilden and Jos´eMar´ıaMontesinos because as Maite Lozano pointed out in the meeting of mathematical societies in Ume˚a in June 2017, where she was plenary speaker, \I am specially proud of been part of the team Hilden-Lozano-Montesinos (H-L-M), and of our mathematical achivements" 1 Historical motivation of universal links and knots.
    [Show full text]