In Vitro Evaluation of Free Radical Scavenging Activity of Codariocalyx Motorius Root Extract

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro Evaluation of Free Radical Scavenging Activity of Codariocalyx Motorius Root Extract Asian Pacific Journal of Tropical Medicine (2013)188-194 188 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi: In vitro evaluation of free radical scavenging activity of Codariocalyx motorius root extract Uma Chidambaram1, Vanitha Pachamuthu1, Suganya Natarajan1, Bhakkiyalakshmi Elango1, Suriyanarayanan2, Kunga Mohan Ramkumar1* 1 Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur- 603 203, Tamilnadu, India 2 Department of Water and Health, JSS University, Mysore - 570015, Karnataka, India ARTICLE INFO ABSTRACT Article history: Objective: Codariocalyx motorius To determine the phenolic content in root extract and to Received 15 September 2012 in vitro Methods: evaluate its antioxidant properties using various assay systems. The antioxidant Received in revised form 27 December 2012 Accepted 28 January 2013 activity was evaluated based on scavenging of 1,1-diphenyl-2-picrylhydrazyl, hydroxyl Available online 20 March 2013 radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and by inhibitionResults: of lipid peroxidation which wasCodariocalyx estimated inmotorius terms of(C. thiobarbituric motorius) acid reactive substances. The root extract of the exhibited potent Keywords: Codariocalyx motorius total antioxidant activity that increased with increasing amount of extract concentration, which was compared with standard drug such as quercetin, butylated hydroxytoluene, tocopherol at Antioxidant activity different concentrations. The different concentrations of the extracts showed inhibition on lipid Medicinal plants peroxidation. In addition, the extracts had effective reducing power, free radical scavenging, Polyphenols super oxide anion scavenging, nitric oxide scavenging, lipid peroxidation, and total phenolic content depending on concentration. High correlation between total phenolic contents and r2 scavenging potential of different reactive oxygen species ( =0.831-0.978) indicated the Conclusions C. motorius polyphenols as the main antioxidants. : Codariocalyx motorius ( ) root possess the highly active antioxidant substance which can be used for the treatment of oxidative stress-related diseases. 1. Introduction defence system within the body can easily scavenge free radicals that are produced. In human diseases an increased free radical generation occurs and resulted in lipid Free radicals are produced either from by normal cellular peroxidation of the membrane lipids, causing damage to processes or from external sources such as exposure to phospholipids of cell membrane, lipoprotein by propagating radiation, cigarette smoking, air pollutants and industrial a chain reaction cycle[2]. Therefore, antioxidants with free • chemicals. The most common reactive -oxygen species radical scavenging activities may have great significance in (ROS) • O2 include: the superoxide1 anion ( ), the hydroxyl the protection and therapeutics of diseases involving free radical (OH ), singlet oxygen ( O2), and hydrogen peroxide radicals[3,4]. (H2O2). The oxidation induced by ROS may result in cell Recently, there has been a considerable interest in finding membrane disintegration, membrane protein damage and natural antioxidants from plant materials, though they are DNA mutations which play an important role in aging accepted to be safe[5,6]. All higher plants have characteristic and can further initiate or propagate the development of compounds, such as vitamins, carotenoids, and phenolics, many diseases, such as arteriosclerosis, cancer, diabetes have exhibited antioxidant property through scavenging of mellitus, liver injury, inflammation, coronary heart diseases free radicals. Numerous studies have demonstrated that the and arthritis[1]. Under normal conditions, the antioxidant consumption of plants and vegetables with high phenolic content can reduce the risk of cardio- and cerebrovascular *Corresponding author: Dr. K.M. Ramkumar, Department of Biotechnology, School diseases and cancer mortality[7,8]. Phytochemicals having of Bioengineering, SRM University, Kattankulathur - 603203, Tamilnadu. Tel: +91-9940737854 antioxidant properties are associated with a lower risk of Fax: +91-44-2745 2343 mortality from many of the diseases[9]. E-mail: [email protected] Uma Chidambaram et al./Asian Pacific Journal of Tropical Medicine (2013)188-194 189 Codariocalyx motorius C. motorius ( ) belongs to the 2.4. ABTS cation radical scavenging activity Fabaceae family and is also known as Telegraph plant[10]. It is widely distributed throughout Bangladesh, Bhutan, Codarioalyx motorius Cambodia, China, India and Indonesia[11]. In Siddha The total antioxidant activity of medicine, it is used as antidote, cardiac-tonic and wound root extract (CMRt) was measured by the ABTS [15] healing ointment[12]. It has also been used in curing snake radical cation-decolorization assay . ABTS was prepared by reacting 5 mL of 7 mM ABTS and 80 毺L bite poisons. In‘Codariocalyx China, it has motorius been widely ohashi used’ in Ayurvedic medicine as and the main of 140 mM potassium persulphate and the mixture was 12-16 constituent of herbal tea[13]. It also been reported to contain allowed to stand in the dark at room temperature for h ABTS few alkaloids including hypaphorine, phenethylamines before use. (1 mL) was added to glass test tubes 50 CMR 1-1 000 and 5-Methoxy-N,N-dimethyltryptamine[12]. To the best containing 毺L of t ( 毺g/mL) and mixed by vortex mixer for 30s. Absorbance was measured at 734 nm of our knowledge no other study on biological properties, after 2 min. BHT was used as a standard. The percentage of including antioxidant properties was carried out so far on radical scavenging activity was calculated by comparing the this plant. The main objectives of the present study were to absorbance values of control (not treated with the extract). determine the phenolic contentC. motorius and screening of free radical All determinations were performed six times. scavenging activities of root extract. 2.5. Scavenging of superoxide radical 2. Materials and methods • The scavenging activity towards the superoxide radical-. 2.1. Plant material was measured in terms of inhibition of generation of O2 The assay was performed using alkaline DMSO method[16]. C. motorius ’ Potassium superoxide and DMSO were allowed to stand in Fresh root of were collected in November 2011 contact for 24 h and the solution was filtered immediately from the Kolli hills/ Kollimalai, Namakkal district of Tamil before use. Filtrate (200 毺L) was added to 2.8 mL of an Nadu and authenticated in National institute of Herbal aqueous solution containing NBT (500 毺M), EDTA (10 Science, Chennai, India (Accession No: PARC/2012/1085). 毺M) and potassium phosphate buffer (10 mM). Test The plant material was deposited at the Department of compounds (1 mL) at various concentrations (1-1 000 毺g/mL) Biotechnology, SRM University. were added and the absorbance was recorded at 560 nm against a control in which pure DMSO was added instead 2.2. Polyphenol extraction from roots of alkaline DMSO. The results were compared with the reference antioxidant quercetin. The collected roots were washed and dried in shade for a week 2.6. Nitric oxide radical scavenging assay and powdered. Every dried and powdered root sample (5 g) was extracted using soxhlet apparatus, at 30 曟 for 6 h and The nitric oxide generation capacity was quantified by the acidified with 0.01 mol/L H2SO4 as previously described[14]. Griess Illosvoy reaction using sodium nitroprusside (SNP)[17]. The aqueous solution obtained was extracted three times The reaction mixture contained 10 mM SNP, phosphate with butanol (200 mL), using a separatory funnel. The buffer (pH 7.4) and different concentration of the extract three alcoholic phases which contain all the polyphenol (1-1 000 毺g/mL) and incubated for 2 hours at room temp. compounds were combined and the butanol extract was Then 1 mL of 0.33% sulfanilamide (in 20% glacial acetic 35 then brought to dryness using a rotating evaporator at 曟. acid) was added and allowed to stand for 5 min. Then 1 mL The dry matter obtained was dissolved with deionized water of 0.1% napthylethylenediamine dihydrochloride was added (100 mL) and extracted with ethyl acetate (3伊10 mL). The and the mixture was further incubated for 30 min. Quercetin organic layer containing the phenolics was finally dried. was used as the reference compound. The color developed 2.3. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical was measured spectrophotometrically at 540 nm against a scavenging assay blank sample. 2.7. Peroxynitrite scavenging assay To determine the DPPH scavenging activity of the extract, 3 mL of 60 毺M DPPH in ethanol was added to different An Evans Blue bleaching assay was used to measure concentration of CMRt (1-1 000 毺g/mL) and then incubated peroxynitrite scavenging activity[18]. The reaction mixture at room temperature (dark condition) for 15 min. Absorbance contained 50 mM phosphate buffer (pH 7.4), 0.1 mM DTPA, was read at 517 nm using a Genesys-5-spectrophotometer 90 mM NaCl, 5 mM KCl, 12.5 毺M Evans Blue, different (Spectronic Instruments, Rochester, NY). butylated concentration of plant extract (1-1 000 毺g/mL) and 1 mM hydroxytolune (BHT) was used as a standard. The percentage peroxynitrite in a final volume of 1 mL. After incubation 30 611 of DPPH radical scavenging activity was calculated by for min, the absorbance was measured- at nm. comparing
Recommended publications
  • Multiple Polyploidy Events in the Early Radiation of Nodulating And
    Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown.
    [Show full text]
  • Vol: Ii (1938) of “Flora of Assam”
    Plant Archives Vol. 14 No. 1, 2014 pp. 87-96 ISSN 0972-5210 AN UPDATED ACCOUNT OF THE NAME CHANGES OF THE DICOTYLEDONOUS PLANT SPECIES INCLUDED IN THE VOL: I (1934- 36) & VOL: II (1938) OF “FLORA OF ASSAM” Rajib Lochan Borah Department of Botany, D.H.S.K. College, Dibrugarh - 786 001 (Assam), India. E-mail: [email protected] Abstract Changes in botanical names of flowering plants are an issue which comes up from time to time. While there are valid scientific reasons for such changes, it also creates some difficulties to the floristic workers in the preparation of a new flora. Further, all the important monumental floras of the world have most of the plants included in their old names, which are now regarded as synonyms. In north east India, “Flora of Assam” is an important flora as it includes result of pioneering floristic work on Angiosperms & Gymnosperms in the region. But, in the study of this flora, the same problems of name changes appear before the new researchers. Therefore, an attempt is made here to prepare an updated account of the new names against their old counterpts of the plants included in the first two volumes of the flora, on the basis of recent standard taxonomic literatures. In this, the unresolved & controversial names are not touched & only the confirmed ones are taken into account. In the process new names of 470 (four hundred & seventy) dicotyledonous plant species included in the concerned flora are found out. Key words : Name changes, Flora of Assam, Dicotyledonus plants, floristic works.
    [Show full text]
  • Desmodium Gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit
    Effects of Static Magnetic Field on the Ultradian Lateral Leaflet Movement Rhythm in Desmodium gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560 064, Karnataka, India b Department of Botany, Physiological Ecology of Plants, University of Tübingen, D-7400, Tübingen, Auf der Morgenstelle 1, Germany c Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway Fax: 004773591852. E-mail: [email protected] * Author for correspondence and reprint request Z. Naturforsch. 55c, 638-642 (2000); received January 18/March 20, 2000 Oscillations, Video Imaging, Ion Movements The rhythmic leaflet movements of the plantDesmodium gyrans (L.f.) DC slow down in the presence of a static magnetic field. The leaflet positions were digitally retrieved from sequential CCD camera images of the moving leaflets. The experiments were performed under constant light (ca. 500 lux) and temperature (about 20 °C) conditions. The period of the leaflet was then around 5 min. Leaflets moving up and down in a magnetic field of approximately 50 mT flux density increased the period by about 10% due to a slower motion in the “up” position. Since during this position a rapid change of the extracellular potentials of the pulvinus occurs, it is proposed that the effects are mediated via the electric processes in the pulvinus tissue. Introduction the motor cells of the pulvinus. When direct cur­ Although ultradian rhythms of the lateral leaf­ rents (DC) of strength 10 to 100 ^xA was applied lets in the plant Desmodium gyrans have been for 10 sec to the tip of lateral leaflets, the phase of studied intensively, its functional significance still the rhythm was delayed.
    [Show full text]
  • Abstract Introduction
    Author: - K.N. Wijesekara - W.S de Silva Department of Biotechnology, Horizon Campus, Sri Lanka GARI Publisher | Medicinal Plants | Volume: 04 | Issue: 07 Article ID: IN/GARI/ICATMMP/2018/115 | Pages: 33-42 (09) ISSN 2424-6492 | ISBN 978-955-7153-00-1 Edit: GARI Editorial Team | Received: 16.12.2018 | Publish: 20.01.2019 PRELIMINARY SCREENING OF TELEGRAPH (CODARIOCALYX MOTORIUS) PLANT EXTRACT FOR SKIN WHITENING PROPERTY AND CYTOTOXICITY ACTIVITY K.N. Wijesekara, 1W.S de Silva Department of Biotechnology, Faculty of Science, Horizon Campus, Sri Lanka [email protected] ABSTRACT A perfect skin can be remained as a control was 478.800757±3.1567 µg/ml. dream if it does not maintain properly, Value of inhibition of tyrosinase was therefore most of the young women are significantly higher than to positive tempting to skin whitening products that control. The IC50 value of cytotoxicity can be composed of harmful chemicals activity for methanolic extract of leaves that cause dullness, uneven skin tone or of Telegraph plant was 1516.0538± acne breakout instead of making skin 2.407µg/ml. This analysis was revealed healthy and blooming. Natural products IC50 value of methanolic extract is are safe for consumption and will work nontoxic toxic to brine shrimps. on skin naturally and effectively by Therefore, it can be concluded that balancing skin tone and eliminating Codariocalyx motorius leaves possess harmful effects. This study was carried highly active antityrosinase substances out to determine skin whitening property which can be consumed for remedy of and cytotoxicity activity of Codariocalyx healthy and brighten skin. motorius.
    [Show full text]
  • The Arts of Science in the Contact Zone: a Satirical Picture
    Sria Chatterjee The Arts of Science in the Contact Zone: A Satirical Picture Abstract This chapter focusses on a print by the artist Gaganendranath Tagore done in 1922, which features the biophysicist Jagadish Chandra Bose and his experiments in plant science. Considering the overlapping networks of art, science, and nationalist politics within a particular sphere in early twentieth-century British India, the chapter explores the connec- tions between human and non-human contact zones as well as questions around religion and science and the politics of colonial knowledge be- tween the metropole and the colony. Keywords Art and Science, Expanded Contact Zone, Plants, Caricature, Nationalism, Politics Chatterjee, Sria. 2021. “The Arts of Science in the Contact Zone: A Satirical Picture.” 181 In Reading Objects in the Contact Zone, edited by Eva-Maria Troelenberg, Kerstin Schankweiler, and Anna Sophia Messner, 181–187. Heidelberg Studies on Transculturality 9. Heidelberg: Heidelberg University Publishing. DOI: https://doi.org/110.17885/heiup.766. c10423 SRIA ChatteRJEE The object I focus on in this short essay is a black and white print by Gaganendranath Tagore (1867–1938) from a portfolio of “satirical pic- tures” published in 1921 by Thacker and Spink titled Reform Screams. While the portfolio serves to establish a context of political feeling and social reform in pre-independence India through satire, the print I have chosen allows for access into a contact zone that is not only geo- graphic but also one that lies between human and non-human worlds (à⏵Expanded Contact Zone). In this image, Gaganendranath depicts the Indian scientist Jagadish Chandra Bose (1858–1937) who pioneered the investigation of radio waves and experiments in plant science.
    [Show full text]
  • Effects of Static Magnetic Field on the Ultradian Lateral Leaflet Movement Rhythm in Desmodium Gyrans
    Effects of Static Magnetic Field on the Ultradian Lateral Leaflet Movement Rhythm in Desmodium gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560 064, Karnataka, India b Department of Botany, Physiological Ecology of Plants, University of Tübingen, D-7400, Tübingen, Auf der Morgenstelle 1, Germany c Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway Fax: 004773591852. E-mail: [email protected] * Author for correspondence and reprint request Z. Naturforsch. 55c, 638-642 (2000); received January 18/March 20, 2000 Oscillations, Video Imaging, Ion Movements The rhythmic leaflet movements of the plantDesmodium gyrans (L.f.) DC slow down in the presence of a static magnetic field. The leaflet positions were digitally retrieved from sequential CCD camera images of the moving leaflets. The experiments were performed under constant light (ca. 500 lux) and temperature (about 20 °C) conditions. The period of the leaflet was then around 5 min. Leaflets moving up and down in a magnetic field of approximately 50 mT flux density increased the period by about 10% due to a slower motion in the “up” position. Since during this position a rapid change of the extracellular potentials of the pulvinus occurs, it is proposed that the effects are mediated via the electric processes in the pulvinus tissue. Introduction the motor cells of the pulvinus. When direct cur­ Although ultradian rhythms of the lateral leaf­ rents (DC) of strength 10 to 100 ^xA was applied lets in the plant Desmodium gyrans have been for 10 sec to the tip of lateral leaflets, the phase of studied intensively, its functional significance still the rhythm was delayed.
    [Show full text]
  • Page 1 植物研究雜誌 J. Jpn. Bot. 79; 101-139 (2004) Taxonomy And
    植物研究雑誌 J. J. Jpn. Bo t. 79: 79: 101-139(2004) Taxonomy and Distribution of Desmodium and Related Genera (Leguminosae) (Leguminosae) in Malesia (1) Hiroyoshi Hiroyoshi OHASHI Botanical Botanical Garden ,Graduate School of Science ,Tohoku University ,Sendai , 980-0862 JAPAN (Received (Received on November 8,2003) A taxonomic and phytogeographic account of Desmodium and its related genera in Malesia Malesia is presented as a precursory of treatment these genera for the Fl ora Malesiana. Sixty-four Sixty-four species in 13 genera 訂 'e recognized: Aphyllodium (3 spp よ Codariocalyx (3 spp よDendrolobium (8 spp よDesmodiastrum (1 sp よDesmodium (35 spp. of which 27 native native to Malesia and 8 introduced from America) , Hanslia (2 spp よHegnera (l sp よ Hylodesmum (4 spp よ Monarthrocarpus (1 sp よ Ohwia (1 sp よ Phyllodium (3 spp よ Tadehagi Tadehagi (l sp.) , and Trifidacanthus (1 sp.). They 訂 e enumerated with keys to genera , species species and infraspecific taxa ,selected synonyms and bibliography related to the Malesian Malesian flora ,representative specimens , and distribution. Of the 56 species native to Malesia Malesia eight (14 %)訂 e endemic to the region; 29 (52 %)訂 e distributed in Malesia and continental continental Asia but not in Australia; 11 (20 %) are common in Malesia and Australia but not not in continental Asia; and eight (14 %) are found in all these areas. Based on the dis- tribution tribution analysis ,a differentiation pattem of the species in these genera in Malesia is presumed. presumed. This This paper is divided into two parts. Aphyllodium ,Codariocalyx ,Dendrolobium , Desmodiastrum , and Desmodium are treated in the first p訂t.
    [Show full text]
  • Kinematic Amplification Strategies in Plants and Engineering
    Kinematic amplification strategies in plants and engineering Victor Charpentier, Philippe Hannequart, Sigrid Adriaenssens, Olivier Baverel, Emmanuel Viglino, Sasha Eisenman To cite this version: Victor Charpentier, Philippe Hannequart, Sigrid Adriaenssens, Olivier Baverel, Emmanuel Viglino, et al.. Kinematic amplification strategies in plants and engineering. Smart Materials and Structures, IOP Publishing, 2017, 26 (6), pp.63002 - 63002. 10.1088/1361-665X/aa640f. hal-01618277 HAL Id: hal-01618277 https://hal-enpc.archives-ouvertes.fr/hal-01618277 Submitted on 17 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 30 AUTHOR SUBMITTED MANUSCRIPT - SMS-104018.R2 1 2 3 Kinematic amplification strategies in plants and engineering 4 5 6 1 2,3 1 2 7 Victor Charpentier* , Philippe Hannequart* , Sigrid Adriaenssens , Olivier Baverel , 3 4 8 Emmanuel Viglino , Sasha Eisenman 9 10 1Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA 11 12 2 Laboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France 13 14 3 Arcora, Ingérop Group, Rueil-Malmaison, France 15 16 4 Department of Landscape Architecture and Horticulture, Temple University, Ambler, PA, USA 17 18 19 *The authors designated have contributed equally to the research and writing of the manuscript 20 21 22 23 Abstract: 24 While plants are primarily sessile at the organismal level, they do exhibit a vast array of 25 movements at the organ or sub-organ level.
    [Show full text]
  • 03 V a SHEPHERD.Pmd
    ARTICLE ON THE NERVOUS MECHANISMS OF PLANTS V.A. SHEPHERD* Science has under-estimated plants. Neurons, a large brain, and the ability to rapidly move are widely regarded as requisites for intelligent and adaptive behaviour. The sessile, slow-moving plants lack these structures and capacities. Nonetheless, plants share neural homoplasies with animals, including a simple form of nervous system and integrative centres or root-brains. Plants employ long-distance electrical signals (action potentials) transmitted via phloem tissues, and local electrical signals (variation potentials) when responding to the environmental exigencies to which they are captive. Evidence is growing that plants possess distributed swarm intelligence, embodied cognition, and purposive, intentional behaviours. Sir J. C. Bose (1858-1937) was a pioneer of this field. He invented unique instruments for measuring bioelectric potentials and for quantifying subtle movements of plants. He concluded that plants have a form of nervous system, and coordinate responses to the environment through electrical and hydraulic signalling. He identified pulsatile rhythmic oscillations in electric potential, turgor pressure, contractility, and growth as motifs elemental to plant behaviour. He recognised that phenotypic plasticity is the key to the adaptive behaviour of plants. He regarded plants as possessing simple intelligence, memory and purposeful behaviours. On the centenary of the establishment of the Bose Institute, this article reviews Bose’s legacy in the field of plant signalling and behavior — a legacy that continues to grow— and situates his work in the context of current research. Introduction enters our biosphere, around 50% of which occurs in the oceans. On land, leaves position themselves to harvest light cience has under-estimated plants : Until recently, energy.
    [Show full text]
  • The Genus Codariocalyx Hassk. (Leguminosae-Papilionoideae) in Thailand: Taxonomy and Anatomy of Leaf and Stem
    Songklanakarin J. Sci. Technol. 41 (4), 788-794, Jul. – Aug. 2019 Original Article The genus Codariocalyx Hassk. (Leguminosae-Papilionoideae) in Thailand: taxonomy and anatomy of leaf and stem Witsanu Saisorn and Pranom Chantaranothai* Center of Excellence on Biodiversity, Department of Biology, Faculty of Science, Khon Kaen University, Mueang, Khon Kaen, 40002 Thailand Received: 21 November 2017; Revised: 20 March 2018; Accepted: 26 March 2018 Abstract The genus Codariocalyx Hassk. in Thailand is revised. Three species viz. C. gyroides (Roxb. ex Link) X.Y.Zhu, C. microphyllus (Thunb.) H.Ohashi and C. motorius (Houtt.) H.Ohashi are recognized. A key, descriptions, photographs, distribution maps, ecological and phenological data and vernacular names are provided. The anatomy of the leaf and stem are also presented. Keywords: anatomy, Desmodieae, Fabaceae, taxonomic revision 1. Introduction 2. Materials and Methods The genus Codariocalyx Hassk. was described by Our taxonomic study was based on herbarium Hasskarl (1842), to accommodate four species: C. capitatus specimens from AAU, ABD, BCU, BK, BKF, BM, BO, C, Hassk., C. conicus Hassk., C. gyrans (L.f.) Hassk., and C. CMU, CMUB, E, FOF, G, HN, HNU, K, KEP, KKU, KYO, gyroides (Roxb. ex Link) X.Y.Zhu. In The Plant List L, NHL, P, PSU, QBG, SING, TI and online type specimens (http://www.theplantlist.org), C. capitatus is listed as an from BRI, G, PE, R and S. Herbarium acronyms are followed unresolved name and C. conicus as a synonym of C. gyroides. Thiers (2016). Living plants of all three species were observed Desmodium microphyllum (Thunb.) DC., which appears as an in various parts of Thailand and herbarium material was accepted name in The Plant List, was transferred to collected.
    [Show full text]
  • The Unique Nutriceutical Components of the Ethnic Medicinal Plant-Codariocalyx Motorius
    Research Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.24.004096 The Unique Nutriceutical Components of the Ethnic Medicinal Plant-Codariocalyx Motorius Guan Rong Li*, Rui Hua Ren, Jing Huang, Da Jin Lv and Wei Liu College of Agronomy and Biotechnology, Sowthwest University, China *Corresponding author: Guan Rong Li, Professor, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China ARTICLE INFO Abstract Received: January 08, 2020 In this study, the nutriceutical components in the traditional medicinal plant of Published: January 21, 2020 C. motorius 7.2, 6.8 and were16.4 studiedin stems, for 8.5, the 5.1 first and time. 15.6 Results in leaves, showed and 7.9,that 8.2 the and soluble, 23.6 reducingin seeds, Citation: Guan Rong Li, Rui Hua Ren, Jing and total sugar contents in percentage by fresh weight were 13.1, 8.0 and 19.8 in roots, Huang, Da Jin Lv, Wei Liu. The Unique contentsrespectively; in percentage crude fiber were contents 5.7, 4.9, in percentage8.1 and 8.7 respectively;were 3.8, 5.7, total 0.4 and amino 4.6 acid respectively; contents Nutriceutical Components of the Ethnic incrude the proteinhydrolytes contents of roots, in percentage stems, leaves were and 11.0, seeds 8.8, 17.3 were and 4.52, 22.4, 3.35, and 18.2soluble and protein 18.86 Medicinal Plant-Codariocalyx Motorius. g/100 g dry weight and essential amino acid contents were 1.72, 1.41, 7.54 and 7.22 Biomed J Sci & Tech Res 24(4)-2020.
    [Show full text]
  • The Genus Desmodium Desv. (Fabaceae) in Gujarat, India Sandipkumar L
    Biological Forum – An International Journal 5(2): 94-99(2013) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 The Genus Desmodium Desv. (Fabaceae) in Gujarat, India Sandipkumar L. Patel * and J. P. Patel ** *Seedlings Research Foundation Trust, Motapondha, Valsad, Gujarat, India. ** V.P. & R.P.T.P. Science College, Sardar Patel University, V.V. Nagar, Anand, (GJ), India. (Received 05 October, 2013, Accepted 25 October, 2013) ABSTARCT: The genus Desmodium Desv. (Fabaceae) is revised in Gujarat, India. A total of 13 species are recognized. The present investigation is an attempt to make a comprehensive account having details on updated botanical names and choosing of specific morphological characters for accurate and easy identification. Artificial identification key was reframed so as to identify currently recognized Desmodium species in Gujarat. Keywords: Desmodium, Identification, Gujarat shading plants in the fields, which can also INTRODUCTION suppress the growth of weeds (Khan et al., 2001). The genus Desmodium Desv., commonly known Moreover, the various Desmodium species have as tick clover or beggarweed, contains about 280 served in folk medicine as febrifuges, remedies species: mostly in subtropical and tropical for dysentery and liver diseases and have been regions. Many of its members play an important used in poultice and other decoctions to treat role in sustainable agriculture, forestry and acne, ulcers, catarrh, abscesses and eye diseases forage production (Gu et al., 2007). For example, (Allen and Allen, 1981). In India, about 50-60 Desmodium intortum and Desmodium Desmodium species are found. heterocarpon have been used for forages and Table1: List of Desmodium species recorded for the Flora of Gujarat in major taxonomic works.
    [Show full text]