Agriculture in Transition Agricultural Productivity

Total Page:16

File Type:pdf, Size:1020Kb

Agriculture in Transition Agricultural Productivity 101087 AGRICULTURE IN TRANSITION AGRICULTURAL PRODUCTIVITY AND MARKETING DEBRA RASMUSSEN AND CHARLES ANNOR-FREMPONG MONGOLIA FEBRUARY 18, 2015 Agricultural Productivity and Marketing Report TABLE OF CONTENTS Table of Contents ........................................................................................................................................... i EXECUTIVE SUMMARY ................................................................................................................................ ix 1 Background to the Study....................................................................................................................... 1 1.1 Background and Objectives .......................................................................................................... 1 1.2 Methodology and Issues ............................................................................................................... 1 1.3 Structure of the Report ................................................................................................................. 2 2 The Agricultural Setting ........................................................................................................................ 3 2.1 The Challenge of Shifting Paradigms ............................................................................................ 3 2.2 Agricultural Resources .................................................................................................................. 4 2.3 The Policy Environment ................................................................................................................ 5 3 Agricultural Output and Contribution to GDP .................................................................................... 12 3.1 Transition’s Impact on Agriculture and Rural Livelihoods .......................................................... 12 3.2 Agriculture’s Contribution to GDP and Employment .................................................................. 13 3.3 Agricultural Output ..................................................................................................................... 14 4 Demand and Trade.............................................................................................................................. 19 4.1 Trends in Domestic Demand and Consumption ......................................................................... 19 4.2 Agricultural Exports ..................................................................................................................... 22 4.3 Issues in Export Readiness .......................................................................................................... 27 4.4 Agricultural Imports .................................................................................................................... 28 4.5 Terms of Trade ............................................................................................................................ 30 5 Agricultural Production and Productivity ........................................................................................... 31 5.1 Livestock Sector .......................................................................................................................... 31 5.2 Crop Sector.................................................................................................................................. 50 5.3 Integrating and Intensifying Crop and Livestock Production ...................................................... 63 5.4 Supply and Quality of Inputs ....................................................................................................... 65 5.5 Finance ........................................................................................................................................ 67 5.6 Risk Management ....................................................................................................................... 69 5.7 Innovation – Training, Research and Extension .......................................................................... 71 5.8 Cooperatives ............................................................................................................................... 73 5.9 Pasture Management Groups and Mechanisms......................................................................... 74 6 Marketing Systems and Issues ............................................................................................................ 75 World Bank Mongolia Agriculture Productivity and Marketing Study P a g e | i Agricultural Productivity and Marketing Report 6.1 Livestock and Livestock Products ................................................................................................ 75 6.2 Crop Marketing Systems and Issues ........................................................................................... 80 6.3 Commodity Exchange, Auction and Related Subsidies ............................................................... 83 6.4 Grading and Price-Quality Relationships .................................................................................... 84 6.5 Food Safety and Quality .............................................................................................................. 85 7 Processing and Value Added ............................................................................................................... 86 7.1 Meat ............................................................................................................................................ 86 7.2 Hides and Skins ........................................................................................................................... 89 7.3 Fiber and Fiber Products ............................................................................................................. 90 7.4 Milk and Milk Products ............................................................................................................... 94 7.5 Milling and Crushing ................................................................................................................... 97 7.6 Livestock Feeds ........................................................................................................................... 98 7.7 Potato, Vegetable and Small Fruit Processing ............................................................................ 99 7.8 Common Issues ......................................................................................................................... 100 8 Competitiveness and Potentials ....................................................................................................... 102 8.1 Competitiveness, Key Issues and Actions ................................................................................. 102 8.2 Potential Productivity Levels and Output ................................................................................. 106 8.3 Profitability ................................................................................................................................ 116 8.4 Comparative Advantage and Potential Markets ....................................................................... 125 9 Conclusions and Recommendations ................................................................................................. 133 9.1 Recommendations .................................................................................................................... 133 9.2 Role of the Public and Private Sector:....................................................................................... 147 Appendix A: Stakeholder Meetings and Contacts Appendix B: References Appendix C: Selected Major Policy and Regulatory Issues Appendix D: Potential Cluster Development in Mongolia World Bank Mongolia Agriculture Productivity and Marketing Study P a g e | ii Agricultural Productivity and Marketing Report Figures Figure 3.1: Percentage Change in Livestock Product Production 2006-2012 Figure 3.2: Crop Production since Transition (‘000 mt) Figure 4.1: Trends in the Volume of Cashmere and Wool Exports Figure 5.1: Extensive Livestock Numbers, 1990 to 2012 Figure 5.2: Hay, fodder crops and total FU (1989/90 and 1999 to 2012) Figure 5.3: Total livestock to available fodder (1989/90 and 1999 to 2013) Figure 6.1: Seasonality in Beef Prices, Ulaanbaatar 2008-2013 by Month Figure 6.2: Function of the Agricultural Stock Exchange Figure 7.1: Meat Supply Chain Figure 7.2: Slaughter House Locations Figure 7.3: Milk Supply Chain Tables Table 3.1: Real GDP and Agriculture's Share at Constant 2005 Prices (Billon MNT) Table 3.2: Agriculture's Share of Employment (‘000 persons) Table 3.3: Gross Agricultural Output (Billion MNT) at Constant 2005 Prices Table 3.4: Output of Main Livestock Products (‘000 mt) and Percentage Change from 2006 Table 3.5: Output of Main Crop Products (‘000 mt) and Percentage Change from 2006 Table 4.1: Per Capita Food Consumption, Mongolia (kg/capita and % of 1989) Table 4.2: Forecast Demand for Potatoes, Vegetables and Fruits Table 4.3: Export Value, Select Commodities, Standard Classification of International Trade (Mill USD) Table 4.4: Share of Exports by Major Commodity Group, 2006-2012 (%) Table 4.5: Processed and Semi-Processed Exports, 2006 to 2012 Table 4.6: Meat Exports from Mongolia, 2008-2012 Table 4.7: External and Internal Factors Affecting Export Readiness (% of Firms Reporting) Table 4.8: Agricultural Imports, 2008-2012
Recommended publications
  • On Sustainable and Climate Change Adapted Land Use in the Mongolian Crop Sector
    STUDY ON SUSTAINABLE AND CLIMATE CHANGE ADAPTED LAND USE IN THE MONGOLIAN CROP SECTOR ULAANBAATAR 2020 STUDY ON SUSTAINABLE AND CLIMATE CHANGE ADAPTED LAND USE IN THE MONGOLIAN CROP SECTOR Implemented by THE GERMAN-MONGOLIAN COOPERATION PROJECT ON SUSTAINABLE AGRICULTURE STUDY ON SUSTAINABLE AND CLIMATE CHANGE ADAPTED LAND USE IN THE MONGOLIAN CROP SECTOR Disclaimer CONTENTS This study is published under the responsibility of German-Mongolian FOREWORDS ii Cooperation Project Sustainable Agriculture (MNG 19-01) and Subproject Expert dialogue on agriculture for climate change adaptation of the Mongolian LIST OF ABBREVIATIONS viii crop sector (MNG 19-02), which are funded by the German Federal Ministry of Food and Agriculture (BMEL). All views and results, conclusions, proposals or 1. THE EFFECTS OF CLIMATE CHANGE ON THE CROP FARMING recommendations stated therein are the property of the authors and do not SECTOR OF MONGOLIA necessarily reflect the opinion of the BMEL. Natsagdorj L., Erdenetsetseg B. 1 2. TECHNOLOGICAL SOLUTIONS FOR CLIMATE CHANGE ADAPTED FARMING Gantulga G., Odgerel B., Bayarmaa Kh., Ganbaatar B., Nyambayar B., Tsogtsaran B. 31 3. OPTIMIZING HUMUS, WATER, AND NUTRIENT MANAGEMENT IN MONGOLIA IN CHANGING CLIMATE CONDITIONS Guggenberger G. 75 4. SUSTAINABLE FARMING ALTERNATIVES IN MONGOLIA UNDER CHANGING CLIMATE CONDITIONS Meinel T. 114 5. ASSESSMENT OF CLIMATE CHANGE IMPACTS ON THE ARABLE FARMING SECTOR OF MONGOLIA Modelling of expected yield developments in spring wheat and potato production Noleppa S., Hackenberg I. 160 Edited by: Prof. Dr. G.Gantulga 6. INDEX-BASED CROP INSURANCE: INTERNATIONAL EXPERIENCE AND OPPORTUNITIES FOR MONGOLIA Dr. B.Erdenebolor Kuhn L., Bobojonov I. 222 7. MONGOLIA’S POLICIES AND INSTITUTIONAL APPROACHES FOR CLIMATE CHANGE ADAPTATION IN CROP FARMING Dagvadojr D.
    [Show full text]
  • Pricing Forage in the Field
    Pricing Forage in Ag Decision Maker the Field File A1-65 uestions often arise about how to arrive Example 2 at a fair price for standing crops such Qas corn silage, oats, hay, and cornstalks. Silage moisture level 70% Although there are no widely quoted market Silage dry matter level 100% - 70% = 30% prices for these crops, they can be valued Silage value at 65% $28.35 per ton according to their relative feed value and $28.35 x (30 / 35) = compared to other crops that have a known Silage value at 70% market price, such as corn grain or hay. $24.30 per ton Corn Silage The quantity of silage harvested can be estimated Corn silage can be quickly valued according to the by: price of corn grain. Taking into account the value 1. weighing several loads and counting the total of the grain, the extra fertilizer cost incurred and number of loads, the harvesting costs saved, a ton of corn silage in 2. calculating the storage capacity of the silo in the field is usually worth 8-10 times as much as a which it is stored (see AgDM Information File bushel of corn, depending on the potential grain and Decision Tool C6-82, Estimated Storage yield. Silage from a field that would yield above Capacity for Grains, Forages, and Liquids, 200 bushels per acre can be valued at 10 times the www.extension.iastate.edu/agdm/wholefarm/ corn price. But if the potential yield is less than pdf/c6-82.pdf), or 100 bushels per acre, the silage should be valued 3.
    [Show full text]
  • Making Grass Silage
    Making Grass Silage Dr. Dan Undersander University of Wisconsin Fermentation analysis profile Legume Grass Corn Silage Silage Silage Moisture: 65%+ <65% 60-65% pH 4.0-4.3 4.3-4.7 3.8-4.2 Lactic Acid 6.0-8.0 6.0-10.0 5.0-10.0 Acetic Acid 1.0-3.0 1.0-3.0 1.0-3.0 Ethanol (% of DM) <1.0 <1.0 <3.0 Ammonia-N (% of CP) <15.0 <12.0 <8.0 Lactic: Acetic ratio 2+ 2+ 3+ Lactic (% of total acids) 60+ 60+ 70+ Dan Undersander-Agronomy © 2013 High quality grass silage results from: 1. Harvesting high quality forage 2. Inoculation 3. Proper packing 4. Covering Dan Undersander-Agronomy © 2013 Making Good Grass Silage Want 10–15% WSC (sugars) in the dry matter Young, leafy grass that has been well fertilized, grass/clover mixtures and autumn cuts tend to have low sugar levels Buffering capacity is directly related to how much sugar it takes to lower silage pH. Grass typically has a low buffering capacity and an adequate supply of sugars High rates of N increase buffering capacity. Dan Undersander-Agronomy © 2013 Grass Dry Matter Digestibility 80 70 60 Indigestible DM 50 40 Recommended harvest 30 Digestible DM 20 10 0 leaf stage boot stage heading full flower Dan Undersander-Agronomy © 2013 Dan Undersander-Agronomy © 2013 Cool Season Grasses Head only on first Cutting 2nd and later cuttings Harvest 1st cutting at boot stage are primarily leaves Boot stage Heading Dan Undersander-Agronomy © 2013 Mowing, Conditioning Mowing height - 3.5 to 4 inches Promotes rapid grass regrowth Reduces dirt contamination Condition with flail conditioner Make wide
    [Show full text]
  • Agr79: Producing Corn for Silage
    AGR-79 Producing Corn for Silage Chad D. Lee, James H. Herbek, Garry Lacefi eld, and Ray Smith, Department of Plant and Soil Sciences orn for silage has been a valuable source of feed for cattle. lage is often in the 113 to 120 days maturity range in Kentucky. CHigh-quality corn silage is obtained with a combination Depending on acreage and harvesting requirements, selecting of good crop management practices, good silage management hybrids across this range in maturity can help with harvest sched- practices, and optimum weather conditions. This publication will ules. Not only does selecting a range in maturity help spread out focus on the management practices of growing corn for silage. harvesting, but it can help spread out the workload for postemer- gence weed control and the risks associated with pollination. Crop Management Practices The growth and maturity of a corn hybrid are closely Hybrid Selection related to daily and sea- Selecting hybrids is an important decision in silage produc- sonal temperature levels. A tion. Capitalizing on high-yielding hybrids will allow you to more accurate scheme for raise more silage per acre. labeling corn hybrid matu- Each year, hybrids for grain are evaluated at seven locations rity is the growing degree across the state in the University of Kentucky Hybrid Corn Perfor- day (GDD) method. The mance Test. The hybrid performance test provides an annual report GGD method predicts corn and ranks yields from each location, averaged over all locations maturities based on mean and averaged across one, two, and three years. Land grant universi- daily temperatures during the ties in neighboring states conduct similar tests.
    [Show full text]
  • From Harvest to Feed: Understanding Silage Management Contents
    From Harvest to Feed: Understanding Silage Management Contents Introduction .................................................................. 1 Advantages of silage .................................................... 1 Disadvantages of silage ................................................ 1 Silage Fermentation .................................................... 2 Phases of normal fermentation ................................... 2 Undesirable fermentation ............................................ 4 Harvest Guidelines to Maximize Forage Quality and Minimize Losses ....................... 6 Pre-harvest preparations .............................................. 6 Moisture content and maturity ................................... 6 Chop length and particle size .................................... 10 Oxygen exclusion ........................................................ 11 Management practices specific to silo type ............. 12 Harvest concerns specific to crop type..................... 15 Harvest concerns related to weather ........................ 15 Silage Additives ......................................................... 19 Fermentation stimulants ............................................ 19 Fermentation inhibitors .............................................. 22 Nutrient additives ....................................................... 22 Recommendations for additive use .......................... 23 Conclusions .................................................................. 25 Feeding Management ..............................................
    [Show full text]
  • 1 Degradation in Mongolia's Gobi Desert: Not As Straight Forward As
    Degradation in Mongolia’s Gobi Desert: not as straight forward as assumed J. Addison A,B . M. Friedel A. C. Brown C. J. Davies A. S. Waldron A. A c /o CSIRO Ecosystem Sciences, PO Box 2111, Alice Springs, NT, 0871, Australia B Corresponding author: [email protected] C School of Agriculture and Food Science, University of Queensland, St Lucia, Qld, 4067, Australia Short title: How applicable are degradation assumptions to Mongolia’s Gobi Desert? Abstract Assumptions about the levels and causes of rangeland degradation in Mongolia have become embedded amongst a range of stakeholders. This paper explores the applicability of five such widely-held assumptions about rangeland degradation in Mongolia to the more specific case of the rangelands of the Gobi Desert. These assumptions are: i) there are too many animals; ii) goats have proportionally increased and this is causing desertification; iii) rainfall is declining; iv) there is less pasture now; and v) Mongolian rangelands are degraded. Biophysical and quantitative social data from the Dundgobi and Omnogobi desert-steppe areas suggest not all of these assumptions are supported mechanistically all of the time, and that the information upon which these assumptions are based is more complex than is commonly recognised. Caution in designing policy and programmes based on current understandings of rangeland condition is necessary. 1 Additional keywords : rangeland, Gobi Desert, livestock, goats, climate Introduction Rangeland theory and the understanding of causal mechanisms behind rangeland dynamics have changed significantly over the last century. The largely static ‘climax community’ of Clementsian succession (Clements 1916) has been replaced by ideas of more dynamic multiple stable and non-equilibrium states (Holling 1973; Noy-Meir 1975), thresholds (Friedel 1991), and states and transitions models (Westoby et al .
    [Show full text]
  • New Twists to Butyric Acid in Haylages and Prevention
    NEW TWISTS TO BUTYRIC ACID IN HAYLAGES AND PREVENTION Preventing clostridial growth and the production of deleterious fermentation byproducts such as butyric acid, iso-butyric acid, amines, ammonia etc. is critical to insure high quality haylage crops. Until only recently it seemed that we knew how to prevent the prevention of butyric acid production in haylages. The first key to preventing clostridial fementation and or the production of butyric acid and amines was proper dry matter. Wilting small grain silages and haylages to moisture levels of 65% or less, i.e minimum dry matter of 35% or greater supposedly assured clostridial fermentations would be prevented and hence so would butyric acid and other undesirable by-products. Preventing contamination of haylage crops with excessive soil (and manure) has also been considered critical to preventing clostridia. “Ash” poses several challenges. First it is a source of undesirable micro-organisms. Second, the ash itself is a buffer, requiring more acid produced in order to reach the same terminal pH. Other key practices to preventing clostridia and butyric acid production would include filling and packing haylage crops as fast as possible to prevent prolonged plant respiration from depleting the necesaary sugars to fuel an adquate fermentation. Even when producers use best management practices, there is a preponderance of research documenting the benefit of using both bacterial inoculants and or combinations of bacteria and enzymes to help improve the fermentation of haylages and lessen the risk of clostridial fermentation. Recently however we see more and more instances of low to moderate levels of butyric acid and other evidence of clostridial fermentations even in relatively dry haylages (over 35% dry matter) that are low in ash (10-12%) that were harvested correctly, packed well and sealed well and even inoculated.
    [Show full text]
  • Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia
    sustainability Article Soil Gaseous Emissions and Partial C and N Balances of Small-Scale Farmer Fields in a River Oasis of Western Mongolia Greta Jordan 1, Sven Goenster-Jordan 1,* , Baigal Ulziisuren 2 and Andreas Buerkert 1 1 Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, Universität Kassel, Steinstr. 19, 37123 Witzenhausen, Germany; [email protected] (G.J.); [email protected] (A.B.) 2 Biology Department, School of Arts and Sciences, National University of Mongolia, Youth Str. 1, Baga toiruu, Ulaanbaatar 210646, Mongolia; [email protected] * Correspondence: [email protected] Received: 2 May 2019; Accepted: 13 June 2019; Published: 18 June 2019 Abstract: During the last decades, Mongolian river oases were subjected to an expansion of farmland. Such intensification triggers substantial gaseous carbon (C) and nitrogen (N) losses that may aggravate disequilibria in the soil surface balances of agricultural plots. This study aims to quantify such losses, and assess the implications of these emissions against the background of calculated partial C and N balances. To this end, CO2, NH3, and N2O soil emissions from carrot, hay, and rye plots were measured by a portable dynamic closed chamber system connected to a photoacoustic multi-gas analyzer in six farms of the Mongolian river oasis Bulgan sum center. Average C and N flux rates 1 1 1 1 1 1 1 1 (1313 g CO2-C ha− h− to 1774 g CO2-C ha− h− ; 2.4 g NH3-N ha− h− to 3.3 g NH3-N ha− h− ; 1 1 1 1 1 1 0.7 g N2O-N ha− h− to 1.1 g N2O-N ha− h− ) and cumulative emissions (3506 kg C ha− season− 1 1 1 1 1 1 to 4514 kg C ha− season− ; 7.4 kg N ha− season− to 10.9 kg N ha− season− ) were relatively low compared to those of other agroecosystems, but represented a substantial pathway of losses (86% of total C inputs; 21% of total N inputs).
    [Show full text]
  • The Quality of Preserved Biomass of Some Poaceae Species Under the Conditions of Republic of Moldova
    Lucrări Ştiinţifice – vol. 61(1)/2018, seria Agronomie THE QUALITY OF PRESERVED BIOMASS OF SOME POACEAE SPECIES UNDER THE CONDITIONS OF REPUBLIC OF MOLDOVA Victor ŢÎŢEI1 e-mail: [email protected] Abstract Energy is an essential ingredient of socio-environmental development and economic growth in the modern economy. Anaerobic digestion is an important way of making use of biomass resources and production of renewable energy, environmentally friendly and rapidly expanding in the latest years. Energy crops can be a suitable feedstock and if preserved they can be supplied to biogas plants continuously throughout the year. The aim of the current study was to evaluate the quality and biochemical methane production potential of preserved biomass (silage and haylage) prepared from Poaceae plants, 3-year-old perennial species Miscanthus giganteus and tall fescue Festuca arundinacea, winter cereal crops: rye Secale cereale and triticale Triticum secale. The silage and haylage prepared from these species mowed in June, by organoleptic characteristics (smell, colour and consistency) and biochemical indices (pH, content and correlation of organic acids, chemical composition of the dry matter), largely, met the standards. The chemical composition of the Miscanthus giganteus silage did not differ essentially compared to Triticum secale haylage. The biochemical methane production potential of Miscanthus giganteus silage made as a result of the first mowing in June reached 355 L/kg, Festuca arundinacea silage - 340 L/kg, Secale cereale haylage -333 L/kg, Triticum secale haylage - 358 L/kg organic matter, respectively. Key words: biochemical methane production potential, Festuca arundinacea, Miscanthus giganteus, Secale cereale, Triticum secale, preserved biomass Energy is an essential ingredient of socio- energy crop for biogas production, but its environmental development and economic growth cultivation, harvest and mineral fertilization in the modern economy.
    [Show full text]
  • Corn Silage Production and Utilization
    CorniGrow BEST MANAGEMENT PRACTICES Chapter: 18 Corn Silage Production and Utilization Alvaro Garcia ([email protected]) Silage is a high moisture fermented fodder used as a feed for livestock. It is produced by allowing chopped green vegetation to ferment under air-tight conditions. During the ensiling process water- soluble carbohydrates are converted to acids, which lowers the pH and protects the silage from further deterioration. To optimize silage production, management practices specifically designed for this purpose should be followed. This chapter focuses on the production of the corn crop used to produce silage and provides examples on how to assess its quality. When growing corn for silage, it is important to consider animal performance in addition to yield. Selecting a Corn Hybrid Selecting the same corn hybrids and management practices to produce silage and grain may reduce silage feed quality. Good corn silage hybrids have high yields, high energy, high digestibility, and good animal performance. Critical to maximize silage yields is the selection of the right variety. With lower corn silage yields, there is a greater need for livestock supplementation, which increases feed costs. However, because grain provides needed starch, it is unlikely that corn grain will be completely removed from the ration. Since starch is deposited in the kernels, the amount of grain in the ration is associated with the energy content of the silage. In the past, the rule of thumb for the corn silage grain-to-forage ratio was 50:50. The improved grain yield per unit area of modern corn hybrids is because of the increased optimum plant population rather than the improved grain yield per plant.
    [Show full text]
  • Hay -Crop Silage
    BULLETIN 656 MARCH, 1945 Hay -Crop Silage A Summary of Ten Years' Work C. C. Hayden, A. E. Perkins, C. F. Monroe, W. E. Krauss, R. G. Washburn, and C. E. Knoop ' " OHIO AGRICULTURAL EXPERIMENT STATION Wooster, Ohio This page intentionally blank. ... OONTENTS Introduction 3 Literature 3 Acid-treated silages . ............................. 4 Hydrochloric and sulfuric acids (A. I. V. Process) ................. 4 First experiment . ....................... 5 Second experiment ......................................... 7 Quality of the milk ........................ 7 Effects on the cows ..................................... 8 Phosphoric acid . 9 Feeding value of phosphoric acid silage . 11 As supplement to pasture . 11 VS. corn silage . 11 Effects on the cows . 11 Molasses-treated silages . 12 Ground corn 16 Solid carbon dioxide . 18 Mixtures .......................................................... 18 Alfalfa and wheat .............................................. 18 Alfalfa and carrots 19 Untreated silages .............................................. 19 Dry matter and quality . 20 Summary and conclusions . 22 Literature cited ..................................................... 24 (1) Formerly a job limited to a brief period in early fall, silo filling may now 'be done with various crops or crop ·mixtures through­ out the growing season. Above: Clover and green wheat are unloaded from separate wagons into the same cutter to make a mixed silage of high quality. Below: •Corn and soybeans work well together in the silo in widely varying ~proportions. New machinery will eliminate much of the hand labor now involved in silage making. HAY-CROP SILAGE A Summary of Ten Years' Work C. C, HAYDEN, A. E. PERKINS, C. F. MONROE, W. E. KRAUSS, R. G. WASHBURN, AND C. E. KNOOP INTRODUCTION The making of legume and other hay crops into silages is not new. No one seems to know just when it began.
    [Show full text]
  • AH Istory of L and U Se in M Ongolia
    A H istory of L and Use in Mongolia A H istory of L and Use in Mongolia The Thirteenth Century to the Present ELIZABETH ENDICOTT A HISTORY OF LAND USE IN MONGOLIA Copyright © Elizabeth Endicott, 2012. Softcover reprint of the hardcover 1st edition 2012 978-1-137-26965-2 All rights reserved. First published in 2012 by PALGRAVE MACMILLAN® in the United States— a division of St. Martin’s Press LLC, 175 Fifth Avenue, New York, NY 10010. Where this book is distributed in the UK, Europe and the rest of the world, this is by Palgrave Macmillan, a division of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS. Palgrave Macmillan is the global academic imprint of the above companies and has companies and representatives throughout the world. Palgrave® and Macmillan® are registered trademarks in the United States, the United Kingdom, Europe and other countries. I SBN 978-1-349-44403-8 ISBN 978-1-137-26966-9 (eBook) DOI 10.1057/9781137269669 Library of Congress Cataloging-in-Publication Data. Endicott, Elizabeth. A history of land use in Mongolia : the thirteenth century to the present / Elizabeth Endicott. p. cm. Includes bibliographical references and index. 1. Land use—Mongolia—History. 2. Land use, Rural—Mongolia— History. 3. Rangelands—Mongolia—History. 4. Herders—Mongolia— History. I. Title. HD920.8.E53 2012 333.73Ј1309517—dc23 2012016618 A catalogue record of the book is available from the British Library. Design by Newgen Imaging Systems (P) Ltd., Chennai, India. First
    [Show full text]