Russell Sets, Topology, and Cardinals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a. -
A Taste of Set Theory for Philosophers
Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics. -
Convergence and Submeasures in Boolean Algebras
Converence and submeasures in Boolean algebras Thomas Jech e-mail: [email protected] October 8, 2018 In memory of Bohuslav Balcar Abstract A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fr´echet. 1 Introduction. In 1937, John von Neumann proposed the problem of characterizing the complete Boolean algebras that carry a strictly positive σ−additive measure (The Scottish Book [17], Problem 163.) Such algebras satisfy the countable chain condition (ccc): every subset of mutually disjoint elements is countable. In addition, von Neumann isolated a weak dis- tributive law and asked whether these two properties are sufficient for the existence of measure. arXiv:1705.01019v1 [math.LO] 2 May 2017 The first major contribution to von Neumann’s problem was given by Dorothy Maharam [16] who identified a part of the problem as a topological problem. She showed that a complete Boolean algebra carries a strictly positive continuous submeasure if and only if the sequential topology given by the algebraic convergence is metrizable. This gives a natural decomposition of the von Neumann problem into two parts: I. Does every complete weakly distributive ccc Boolean algebra carry a strictly positive continuous submeasure? 1 II. Does the existence of a strictly positive continuous submeasure imply the existence of a strictly positive σ−additive measure? Part II has become the well known and well-studied Control Mea- sure Problem [12] in Functional Analysis and remained open until Talagrand’s solution [22] in 2008. As for Part I, Maharam showed that a negative answer would follow from the existence of a Suslin algebra. -
Ineffability Within the Limits of Abstraction Alone
Ineffability within the Limits of Abstraction Alone Stewart Shapiro and Gabriel Uzquiano 1 Abstraction and iteration The purpose of this article is to assess the prospects for a Scottish neo-logicist foundation for a set theory. The gold standard would be a theory as rich and useful as the dominant one, ZFC, Zermelo-Fraenkel set theory with choice, perhaps aug- mented with large cardinal principles. Although the present paper is self-contained, we draw upon recent work in [32] in which we explore the power of a reasonably pure principle of reflection. To establish terminology, the Scottish neo-logicist program is to develop branches of mathematics using abstraction principles in the form: xα = xβ $ α ∼ β where the variables α and β range over items of a certain sort, x is an operator taking items of this sort to objects, and ∼ is an equivalence relation on this sort of item. The standard exemplar, of course, is Hume’s principle: #F = #G ≡ F ≈ G where, as usual, F ≈ G is an abbreviation of the second-order statement that there is a one-one correspondence from F onto G. Hume’s principle, is the main support for what is regarded as a success-story for the Scottish neo-logicist program, at least by its advocates. The search is on to develop more powerful mathematical theories on a similar basis. As witnessed by this volume and a significant portion of the contemporary liter- ature in the philosophy of mathematics, Scottish neo-logicism remains controver- sial, even for arithmetic. There are, for example, issues of Caesar and Bad Com- pany to deal with. -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
Lecture 3: Constructing the Natural Numbers 1 Building
Math/CS 120: Intro. to Math Professor: Padraic Bartlett Lecture 3: Constructing the Natural Numbers Weeks 3-4 UCSB 2014 When we defined what a proof was in our first set of lectures, we mentioned that we wanted our proofs to only start by assuming \true" statements, which we said were either previously proven-to-be-true statements or a small handful of axioms, mathematical statements which we are assuming to be true. At the time, we \handwaved" away what those axioms were, in favor of using known properties/definitions to prove results! In this talk, however, we're going to delve into the bedrock of exactly \what" properties are needed to build up some of our favorite number systems. 1 Building the Natural Numbers 1.1 First attempts. Intuitively, we think of the natural numbers as the following set: Definition. The natural numbers, denoted as N, is the set of the positive whole numbers. We denote it as follows: N = f0; 1; 2; 3;:::g This is a fine definition for most of the mathematics we will perform in this class! However, suppose that you were feeling particularly paranoid about your fellow mathematicians; i.e. you have a sneaking suspicion that the Goldbach conjecture is false, and it somehow boils down to the natural numbers being ill-defined. Or you think that you can prove P = NP with the corollary that P = NP, and to do that you need to figure out what people mean by these blackboard-bolded letters. Or you just wanted to troll your professors in CCS. -
THE INFINITE Thomas Jech
THE INFINITE Thomas Jech The Pennsylvania State University century the study of the innite was an exclusive domain of Until the th philosophers and theologians For mathematicians while the concept of innity was crucial in applications of calculus and innite series the innite itself was to paraphrase Gauss just the manner of sp eaking Indeed th century mathe matics even with its frequent use of innite sequences and innitesimals had no real need to study the concept of innity itself functions of real and complex variable and the The increasing use of abstract emerging theory of real numb ers in the work of Cauchy Weierstrass and Dedekind brought ab out the necessity to use innity not only as a manner of sp eaking but rather intro duce into mathematical usage the concept of innite set The earliest mathematician to study sets as ob jects of a mathematical theory Bolzano in the s He gave a convincing philosophical agrument was Bernhard for the existence of innite sets and was also rst to explicitly formulate the concept of onetoone corresp ondence b etween sets It seems that Bolzano was not aware of the p ossibility that there may exist innite sets of dieren t size and that as some historians b elieve he envisioned a mathematical universe where all innite sets are countable While some of his ideas were clearly ahead of his time he did Research for this article was supp orted in part by a grant from the International Research Exchange Board IREX with funds provided by the Andrew W Mellon Foundation the National Endowment for the Humanities -
Lecture 9: Axiomatic Set Theory
Lecture 9: Axiomatic Set Theory December 16, 2014 Lecture 9: Axiomatic Set Theory Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Lecture 9: Axiomatic Set Theory I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: Lecture 9: Axiomatic Set Theory I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. Lecture 9: Axiomatic Set Theory I The axioms of Zermelo-Fraenkel set theory (ZFC). I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). Lecture 9: Axiomatic Set Theory I Justification of the axioms based on the iterative concept of set. Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). I The axioms of Zermelo-Fraenkel set theory (ZFC). Lecture 9: Axiomatic Set Theory Today Key points of today's lecture: I The iterative concept of set. I The language of set theory (LOST). -
Forcing? Thomas Jech
WHAT IS... ? Forcing? Thomas Jech What is forcing? Forcing is a remarkably powerful case that there exists no proof of the conjecture technique for the construction of models of set and no proof of its negation. theory. It was invented in 1963 by Paul Cohen1, To make this vague discussion more precise we who used it to prove the independence of the will first elaborate on the concepts of theorem and Continuum Hypothesis. He constructed a model proof. of set theory in which the Continuum Hypothesis What are theorems and proofs? It is a use- (CH) fails, thus showing that CH is not provable ful fact that every mathematical statement can from the axioms of set theory. be expressed in the language of set theory. All What is the Continuum Hypothesis? In 1873 mathematical objects can be regarded as sets, and Georg Cantor proved that the continuum is un- relations between them can be reduced to expres- countable: that there exists no mapping of the set sions that use only the relation ∈. It is not essential N of all integers onto the set R of all real numbers. how it is done, but it can be done: For instance, Since R contains N, we have 2ℵ0 > ℵ , where 2ℵ0 0 integers are certain finite sets, rational numbers and ℵ are the cardinalities of R and N, respec- 0 are pairs of integers, real numbers are identified tively. A question arises whether 2ℵ0 is equal to with Dedekind cuts in the rationals, functions the cardinal ℵ1, the immediate successor of ℵ0. -
Multiple Forcing, by Thomas Jech. Cambridge Tracts in Mathematics, Vol. 88, Cambridge University Press, Cambridge, 1986, Vii + 136 Pp., $34.50
BOOK REVIEWS 103 REFERENCES 1. B. Blackadar, K-theory for operator algebras, MSRI Publications, no. 5, Springer-Verlag, Berlin and New York, 1986. 2. L. Brown, R. Douglas and P. Fillmore, Extensions of C*-algebras and K-homology, Ann. of Math. (2) 105 (1977), 265-324. 3. A. Connes, A survey of foliations and operator algebras, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc, Providence, R.I., 1982, pp. 521-628. 4. , Noncommutative differential geometry, Inst Hautes Études Sci. Publ. Math. 62 (1986), 257-360. 5. J. Cuntz, K-theory for certain C*-algebras, Ann. of Math. (2) 113 (1981), 181-197. 6. G. Elliott, On the classification of inductive limits of sequences of semi-simple finite dimensional algebras, J. Algebra 38 (1976), 29-44. 7. M. Karoubi, K-theory: An introduction, Springer-Verlag, Berlin and New York, 1978. 8. G. Kasparov, The operator K-functor and extensions of C* -algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571-636. 9. , Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988), 147- 201 (preliminary version was circulated already in 1981). 10. M. Pimsner and D. Voiculescu, Exact sequences for K-groups andExt-groups of certain cross-product C*-algebras, J. Operator Theory 4 (1980), 93-118. JOACHIM CUNTZ FACULTÉ DES SCIENCES DE LUMINY BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 20, Number 1, January 1989 ©1989 American Mathematical Society 0273-0979/89 $1.00 + $.25 per page Multiple forcing, by Thomas Jech. Cambridge Tracts in Mathematics, vol. 88, Cambridge University Press, Cambridge, 1986, vii + 136 pp., $34.50. -
Set-Theoretical Background 1.1 Ordinals and Cardinals
Set-Theoretical Background 11 February 2019 Our set-theoretical framework will be the Zermelo{Fraenkel axioms with the axiom of choice (ZFC): • Axiom of Extensionality. If X and Y have the same elements, then X = Y . • Axiom of Pairing. For all a and b there exists a set fa; bg that contains exactly a and b. • Axiom Schema of Separation. If P is a property (with a parameter p), then for all X and p there exists a set Y = fx 2 X : P (x; p)g that contains all those x 2 X that have the property P . • Axiom of Union. For any X there exists a set Y = S X, the union of all elements of X. • Axiom of Power Set. For any X there exists a set Y = P (X), the set of all subsets of X. • Axiom of Infinity. There exists an infinite set. • Axiom Schema of Replacement. If a class F is a function, then for any X there exists a set Y = F (X) = fF (x): x 2 Xg. • Axiom of Regularity. Every nonempty set has a minimal element for the membership relation. • Axiom of Choice. Every family of nonempty sets has a choice function. 1.1 Ordinals and cardinals A set X is well ordered if it is equipped with a total order relation such that every nonempty subset S ⊆ X has a smallest element. The statement that every set admits a well ordering is equivalent to the axiom of choice. A set X is transitive if every element of an element of X is an element of X. -
Set Theory and Logic, Spring 2019
MATH 71200 - Set Theory and Logic, Spring 2019 Dr. Gunter Fuchs Wednesday & Friday from 12:15 to 1:45pm, Room 9116 This course is going to develop the concept of a formal proof, or a deduction for first order predicate calculus. This purely syntactic concept will be shown to be equivalent to the semantic notion of logical consequence, which is defi- ned using model theory. This equivalence is known as G¨odel'sCompleteness Theorem, and it will be one of the main results this course is aiming at, the other one being G¨odel'sIncompleteness Theorem, which says that it cannot be decided by a finitistic algorithm whether a sentence is provable or not. In order to be able to state that theorem precisely, we shall briefly develop the basics of computability theory. All the proofs will take place in the framework of a weak set theory which will be used as the metatheory. This way, this course is intended to show how intricately model theory, computability theory, proof theory and set theory are intertwined. I will regularly pose homework problems. While I encourage students to discuss the problems together, everybody has to submit their own solutions. Students are asked to use LATEX to layout their solutions and submit printouts of their work, or to send them by email. There will be a final exam at the end of the semester, offered as part of the logic qualifier. The grade for the course will be the average of the homework grade and the final exam. To succeed in the course, it will be crucial to review the concepts, proofs and ideas presented in class.