Seamounts and Plateaus

Total Page:16

File Type:pdf, Size:1020Kb

Seamounts and Plateaus 海洋底ダイナミクス 2018 Ocean Floor Geodynamics 2018 13. プレート内火成活動:海山と海台 Intraplate volcanism: seamounts and plateaus プレート内火成活動 Intraplate volcanism Type1 古典的なホットスポット:不動か?“Classic” type hot spot Type2 スーパースウェル Super swell Type3 リソスフェアのクラック+プチスポット Lithosphere cracks + petit spot 巨大火成岩岩石区 Large Igneous Provinces (LIPs) 巨大海台 Oceanic plateaus 環境・地球史への影響 Environmental impact 1 地球の火成活動(現世) volcanism on earth (Press, Understanding Earth, 2003 2 FEATURE | FOCUS Mantle plumes persevere Anthony A. P. Koppers The ocean floor is littered with hundreds of thousands of mostly extinct volcanoes. The origin of at least some of these seamounts seems to rest with mantle plumes. recent census suggests that Morgan’s mantle plumes conduits are difcult to resolve using seamounts1 — typically extinct Some hotspots form seamount trails seismic data4,5, their existence has been A underwater volcanoes — are along the surface of tectonic plates, far difcult to confrm. Many question whether numerous. It has been estimated that away from their volcanically active plate all hotspot volcanism is formed by mantle about 125,000 seamounts with a height boundaries. Forty years ago, W. Jason plumes6,7 and some doubt whether mantle of more than one kilometre exist on our Morgan introduced the concept of mantle plumes exist at all8,9. ocean foors. Most of these are postulated plumes to explain this kind of hotspot Perhaps the most captivating aspect to form at volcanic hotspots that are the volcanism2,3. According to his theory, of Morgan’s plume model is that he could surface expressions of mantle plumes plumes of hot material upwell from the explain the formation of the Hawaiian– — hot material upwelling from Earth’s deep mantle. During ascent and on impact Emperor and three other seamount trails interior. Yet, many seamounts do not show with the overlying tectonic plates, these along the Pacifc Ocean foor. Tese three the typical characteristics expected for plumes drive melting and the production trails track each other in such a way that volcanoes that have formed above a mantle of magma, which erupts to form volcanic they can be explained by the rotation of plume. So, debate about the feasibility of seamounts at the plate surface. Morgan a rigid Pacifc plate that is drifing over the mantle plume hypothesis is ongoing. proposed that the migration of tectonic four plumes fxed in the mantle (Fig. 1a). Te most straightforward explanation is plates over stationary and long-lived With this observation, Morgan supplied that not all hotspot volcanoes are alike, mantle plumes would generate chains of compelling support for the existence of and that some groups of seamounts are volcanoes on the ocean foor. However, plumes and also provided independent better explained by mechanisms other than because mantle plumes themselves cannot proof for the motion of tectonic plates mantle plumes.intraplate volcanism be directly sampled and the thin plume relative to the underlying mantle. Te mantle plume model also opened up プレート内火成活動についての最近の認識 potential new avenues of research into the Earth’s deepest regions10. Specifcally, Hotspot if the volcanic seamounts are the surface type 2 expression of a mantle plume, their Mid-ocean erupted lavas could potentially preserve a Hotspot spreading Hotspot type 3 centre type 1 record of long-lived variations in mantle composition and could provide insights into mantle convection. Holes in the theory 67 Te plume model calls on an extensive 0 km global network of long-lived stationary mantle plumes that are continually delivering hot material from deep in the Earth. However, such a global network never fully materialized. It now seems that there aren’t many active hotspot systems CMB around the world, maybe a few dozen — too few to have produced all of the (Koppers, 2011 world’s seamounts. Of those seamounts that do seem to have 3 formed above a mantle plume, some show Figure 1 | Models of ocean-island and seamount-trail formation: Courtillot’s framework6 of three evidence that the underlying plume was hotspot types. The first, a classical Morgan-style long-lived mantle plume, originates from as deep neither long-lived nor stationary. Improved in the mantle as the core–mantle boundary (CMB). The second hotspot type includes short-lived, mapping of seamount trails using satellite smaller plumes originating from shallower parts of the mantle, probably as ofshoots from large altimetry reveals that most seamount trails superplumes. These secondary hotspots are more common. The third type of hotspot is not related to have typical life spans of just 30 million any kind of mantle ウィルソンの定義したホットスポットplume and may form where the oceanic lithosphere cracks or extends. This kind is years11. And samples of lava collected from the least investigateddefinition and may overlap of hotspot considerably by with Wilson the other hotspot(1963) types. the Emperor seamounts during the Deep 816 NATURE GEOSCIENCE | VOL 4 | DECEMBER 2011 | www.nature.com/naturegeoscience © 2011 Macmillan Publishers Limited. All rights reserved (Wilson, 1963 relatively small, long-lasting, and hot regions -- called hotspots -- must exist below the plates that provide localized sources of high heat energy (thermal plumes) to sustain volcanism. 4 固定ホットスポット仮説と海山列 fixed hotspot hypothesis and hotspot track • Hotspots are fixed in deep mantle = no relative motion among hotspots • Seamounts chain extending from hotspot is a kind of “track” of plate motion. • support ‘plate tectonics’ • provide past plate motions (Understanding Earth, 2003) 5 ハワイー天皇海山列 Hawaii hotspot and Emperor seamount chain (Press, Understanding Earth, 2003 6 ホットスポットの分布 Global distribution of hotspot Based on UTIG hotspot list 7 ホットスポット火成活動の特徴 Hotspot volcanism : Features • Courtillot et al.(2003)’s five criteria • long-lived tracks • traps at their initiation • magma flux > 103 kg/s • High 3He/4He or 21Ne/22Ne • anomalously low shear velocities (Vs) in the mantle below 8 noticeable for the Hawaiian-Emperor seamount trail (e.g., Watts, 1976) and is believed to be directly related to the buoyancy of a plume and its interac- FLEXURAL tion with the overlying Pacifc Plate MOAT (Figure 1). Mapping of these swells using satellite-derived gravity and geoid data, for instance, allowed scientists to equate the sizes of these swells to vertical plume fuxes. Although the MID-PLATE volume of active intraplate volcanism is SWELL small compared to island arc volcanism and the formation of the oceanic crust 0 Myr 1.4 Myr 4.2 Myr 7.0 Myr 15.215 2 MyMyrr 23.623 6 MyMyrr ホットスポット軌跡 at the mid-ocean ridges, plume fuxes 0 1 ranging from 1.0 Mg s-1 (Canary) to track and mantle plume Thermal Anomaly 8.7 Mg s-1 (Hawai`i) become signifcant when integrated over geological time and including all known hotspot systems (Davies, 1988; Sleep, 1990). Further observations that support the presence of mantle plumes include evidence that these lithospheric swells diminish away from active hotspots, the formation of linear age-progressive seamount trails, and the volcanic extinction of seamounts Figure 1. Te Hawaiian-Emperor hotspot trail is our textbook example of the classical mantle (Van Keken, 1997 when plate motions move them away plume model explaining the formation of intraplate seamounts. In this map of the Northwest Pacific (D. Sandwell and W.M. Smith: Gravity Anomaly Map based on Satellite Altimetry, from their hotspot locations. Version 15.2), this archetypical seamount trail is exemplified by a deep flexural moat along its But mantle-plume behavior is not entire length and a significant mid-plate swell only prevalent toward the young southeastern end. Te linearity of this seamount trail, in combination with a large mid-plate swell and a quite so simple, as the latest numerical systematic age progression (with radiometric ages increasing toward the older northwestern mantle convection models suggest end; see Figure 2), provides strong evidence for the existence of a mantle plume, maybe origi- that a simple density-driven upwelling nating deep in the mantle from a thermal anomaly (see simulation at the bottom by Van Keken [1997]). In this model, the seamount trail only forms after the plume head has dissipated and (Figure 1) is very unusual (but not the narrow plume stem starts interacting with the lithosphere. Because the older Emperor implausible) and that the resulting seamounts have all been subducted into the Aleutian trench to the north, the fate of the plume plumes mostly are not vertically straight, head and any link to large igneous province volcanism are unidentified. narrow, and continuous, but ofen (more or less linear) seamount trails that 1500-m high, and correlating with long- Anthony A.P. Koppers (akoppers@coas. form as the plates constantly move over wavelength gravity and geoid anomalies) oregonstate.edu) is Associate Professor, the “fxed” loci of the upwelling mantle have been found at the leading edges of College of Oceanic and Atmospheric plume stems (Richards et al., 1989). many active seamount trails. Te correla- Sciences, Oregon State University, Corvallis, Many observations are consistent tion implies that the swells are supported OR, USA. Anthony B. Watts is Professor with the existence of mantle(Press, plumes. Understanding at depth Earth, by 2003low-density subcrustal of Marine Geology and Geophysics, Large mid-plate topographic swells mantle material. Tis large-scale warping Department of Earth Sciences, University (typically 1500–3000-km wide, up to of otherwise rigid lithosphere is most of Oxford, Oxford, UK. 9 44 Oceanography Vol.23, No.1 洪水玄武岩 Flood basalt 玉木、岩波地球惑星科学 10 地球化学的な特徴 Geochemical (isotopic) features typical values for R/Ra MORB 8+-2 OIB 5~42 Continent << 1 primordial isotope alpha decay of U and Th accumulate over time Anderson et al. http://www.mantleplumes.org/HeliumFundamentals.html 11 マントルプルームの深部構造 Deep structure of mantle plume •Dense network of Ocean Bottom Seismometers •low-velocity zone extends to lower mantle = mantle plume from D”? (Wolf et al., 2009) 12 V. Courtillot et al.
Recommended publications
  • Hikurangi Plateau: Crustal Structure, Rifted Formation, and Gondwana Subduction History
    Article Geochemistry 3 Volume 9, Number 7 Geophysics 3 July 2008 Q07004, doi:10.1029/2007GC001855 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history Bryan Davy Institute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt, New Zealand ([email protected]) Kaj Hoernle IFM-GEOMAR, Wischhofstraße 1-3, D-24148 Kiel, Germany Reinhard Werner Tethys Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany [1] Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50–100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki- Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge- like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99–89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at 100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125–120 Ma) cannot be ruled out.
    [Show full text]
  • Basaltic Continental Intraplate Volcanism As Sustained by Shear-Driven Upwelling
    Geophysical Research Abstracts Vol. 14, EGU2012-3273-1, 2012 EGU General Assembly 2012 © Author(s) 2012 Basaltic continental intraplate volcanism as sustained by shear-driven upwelling M. D. Ballmer (1), C. P. Conrad (1), and E. I. Smith (2) (1) Department of Geology & Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA, (2) Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Neveda 89154, USA While most volcanism on Earth occurs at plate boundaries, the study of intraplate basaltic volcanism may provide an opportunity to scrutinize the make-up and dynamics of the mantle. In continental settings, a range of mechanisms were proposed to sustain mantle decompression and hence to support such volcanism. These include mantle plumes, fertile melting anomalies, self-sustaining buoyant decompression melting, lithospheric dripping, and edge-driven small-scale convection. Recently, Conrad et al. showed that basaltic continental volcanism occurs more often where shear across the asthenosphere is greatest, and hence propose shear-driven upwelling (SDU) to support such volcanism1. SDU does not require density heterogeneity to drive convection, in contrast to other mechanisms. Rather, it develops when rapid shear across the asthenosphere meets lateral viscosity variation2. For example, in a case with a low-viscosity pocket in the mantle, asthenospheric shear is accommodated in a different manner across the pocket than across the ambient mantle. This contrast drives vertical flow close to the margins of the pocket, and may be sufficient to sustain decompression melting, particularly if the viscosity anomaly is supported by higher water contents or temperatures2.
    [Show full text]
  • The Origin of Intraplate Volcanism on Zealandia C
    Geophysical Research Abstracts, Vol. 10, EGU2008-A-11195, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-11195 EGU General Assembly 2008 © Author(s) 2008 The Origin of Intraplate Volcanism on Zealandia C. Timm (1), K. Hoernle (1), R. Werner (2), F. Hauff (1), P. van den Boogard (1), J. White (3), N. Mortimer (4) (1) IFM-GEOMAR, Wischhofstr. 1-3, 24148 Kiel (2) Tethys Geoconsulting GmbH, Wischhofstr. 1-3, 24148 Kiel (3) Geology Department, University of Otago, PO Box 56, Dunedin 9015, NZ (4) Institute of Geological and Nuclear Sciences, PO Box 31-312, Lower Hut, NZ The origin of intraplate volcanism on continents is generally attributed to mantle plumes or continental rifting. Widespread intraplate volcanism has occurred on the pri- marily submarine New Zealand micro-continent Zealandia almost continuously since its separation from Gondwana approx. 100 Ma ago. This volcanism cannot be directly related to continental rifting and occurred during local periods of both extension and compression. The lack of extended volcanic belts with age progressions in the direc- tion and at the rate of plate motion is not consistent with the plume hypothesis. Volu- minous HIMU-type volcanism was associated with the Cretaceous rifting of Zealandia from Gondwana, consistent with suggestions that a mantle plume or plume head may have been involved in causing the separation of Zealandia from Gondwana (Story et al., 1999). After the “break-up” ∼84 Ma ago, Zealandia drifted ∼6,000 km to the NW. In contrast, lower volumes of eruptives were produced in the Cenozoic. Most mafic (MgO > 5 wt%) Cenozoic lavas define an array between the Cretaceous HIMU-type lavas and Pacific MORB on Sr, Nd, Pb and Hf isotope correlation diagrams, suggest- ing the involvement of the residual HIMU-type plume-type material and the depleted MORB source.
    [Show full text]
  • Hot Spots and Plate Movement Exercise
    Name(s) Hot Spots and Plate Movement exercise Two good examples of present-day hot spot volcanism, as derived from mantle plumes beneath crustal plates, are Kilauea, Hawaii (on the Pacific oceanic plate) and Yellowstone (on the continental North American plate). These hot spots have produced a chain of inactive volcanic islands or seamounts on the Pacific plate (Fig. 1) and volcanic calderas or fields on the North American plate (Fig. 2) – see the figures below. Figure 1. Chain of islands and seamounts produced by the Hawaiian hot spot. Figure 2. Chain of volcanic fields produced by the Yellowstone hot spot. The purposes of this exercise are to use locations, ages, and displacements for each of these hot spot chains to determine 1. Absolute movement directions, and 2. Movement rates for both the Pacific and western North American plates, and then to use this information to determine 3. Whether the rates and directions of the movement of these two plates have been the same or different over the past 16 million years. This exercise uses the Pangaea Breakup animation, which is a KML file that runs in the standalone Google Earth application. To download the Pangaea Breakup KML file, go here: http://csmgeo.csm.jmu.edu/Geollab/Whitmeyer/geode/pangaeaBreakup /PangaeaBreakup.kml To download Google Earth for your computer, go here: https://www.google.com/earth/download/ge/agree.html Part 1. Hawaiian Island Chain Load the PangaeaBreakup.kml file in Google Earth. Make sure the time period in the upper right of the screen says “0 Ma” and then select “Hot Spot Volcanos” under “Features” in the Places menu on the left of the screen.
    [Show full text]
  • Geology of Hawaii Reefs
    11 Geology of Hawaii Reefs Charles H. Fletcher, Chris Bochicchio, Chris L. Conger, Mary S. Engels, Eden J. Feirstein, Neil Frazer, Craig R. Glenn, Richard W. Grigg, Eric E. Grossman, Jodi N. Harney, Ebitari Isoun, Colin V. Murray-Wallace, John J. Rooney, Ken H. Rubin, Clark E. Sherman, and Sean Vitousek 11.1 Geologic Framework The eight main islands in the state: Hawaii, Maui, Kahoolawe , Lanai , Molokai , Oahu , Kauai , of the Hawaii Islands and Niihau , make up 99% of the land area of the Hawaii Archipelago. The remainder comprises 11.1.1 Introduction 124 small volcanic and carbonate islets offshore The Hawaii hot spot lies in the mantle under, or of the main islands, and to the northwest. Each just to the south of, the Big Island of Hawaii. Two main island is the top of one or more massive active subaerial volcanoes and one active submarine shield volcanoes (named after their long low pro- volcano reveal its productivity. Centrally located on file like a warriors shield) extending thousands of the Pacific Plate, the hot spot is the source of the meters to the seafloor below. Mauna Kea , on the Hawaii Island Archipelago and its northern arm, the island of Hawaii, stands 4,200 m above sea level Emperor Seamount Chain (Fig. 11.1). and 9,450 m from seafloor to summit, taller than This system of high volcanic islands and asso- any other mountain on Earth from base to peak. ciated reefs, banks, atolls, sandy shoals, and Mauna Loa , the “long” mountain, is the most seamounts spans over 30° of latitude across the massive single topographic feature on the planet.
    [Show full text]
  • Subsidence and Growth of Pacific Cretaceous Plateaus
    ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating.
    [Show full text]
  • Cenozoic Changes in Pacific Absolute Plate Motion A
    CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations .
    [Show full text]
  • Mantle Plumes and Intraplate Volcanism Volcanism on the Earth
    Mantle Plumes and Intraplate Volcanism Origin of Oceanic Island Volcanoes EAS 302 Lecture 20 Volcanism on the Earth • Mid-ocean ridges (>90% of the volcanism) – “constructive” plate margins • Subduction-related (much of the rest) – “destructive plate” margins • Volcanism in plate interiors (usually) – , e.g., Yellowstone, Hawaii not explained by the plate tectonic paradigm. Characteristics of Intra-plate Volcanoes • Not restricted to plate margins. • Occur at locations that are stationary relative to plate motions, “hot spots”(pointed out by J. T. Wilson, 1963). • Distinctive isotopic and trace element composition. Hot Spot Traces on the Pacific Ocean Floor The Mantle Plume Model • “ Hot spot” volcanoes are manifestations of mantle plumes: columns of hot rock rising buoyantly from the deep mantle – This idea proposed by W. J. Morgan in 1971. • Evidence – Maintain (almost) fixed positions relative to each other; i.e., they are not affected by plate motions – A number of “hot spots” are associated with “swells”, indicative of hot mantle below – Their magmas are compositionally distinct from mid-ocean ridge basalts and therefore must be derived from a different part of the mantle Current Mantle Plumes The Hawaiian Mantle Plume Age of Hawaiian Volcanism The Hawaiian “Swell” Plumes at the surface • In the last 100-200 km, the plume begins to melt. • Once it reaches the base of the lithosphere, it can no longer rise and spreads out. Isotopic Compositions of Oceanic Island Basalts • Nd and Sr isotope ratios 12 DMM distinct from MORB: 10 derived from separate MORB 8 reservoir which is less 6 depleted (and Society ε Nd 4 sometimes enriched) in HIMU incompatible elements.
    [Show full text]
  • Another Clue for Fast Motion of the Hawaiian Hotspot 27 February 2018
    Another clue for fast motion of the Hawaiian hotspot 27 February 2018 Northwest Pacific. But soon there was doubt over whether hotspots are truly stationary. The biggest contradiction was a striking bend of about 60 degrees in this volcanic chain, which originated 47 million years ago. "If you try to explain this bend with just a sudden change in the movement of the Pacific Plate, you would expect a significantly different direction of motion at that time relative to adjacent tectonic plates," says Bernhard Steinberger of the GFZ German Research Center for Geosciences. "But we have not found any evidence for that." Recent studies have suggested that apparently two processes were effective: On the one hand, the Pacific Plate has changed its direction of motion. On the other hand, the Hawaiian hotspot moved relatively quickly southward in the period from 60 to about 50 million years ago - and then stopped. If this hotspot motion is considered, only a smaller change of Pacific plate motions is needed to explain the volcano chain. Graph shows the dates of volcanoes of the three volcanic chains in the Pacific and their relative movement over time (left). The location of the three This hypothesis is now supported by work in which volcanic chains shown in the map (right). The stars mark Steinberger is also involved. First author Kevin the youngest end or the active volcanoes today. Credit: Konrad, Oregon State University in Corvallis, Nature Communications, Kevin Konrad et al. Oregon, and his team have evaluated new rock dating of volcanoes in the Rurutu volcanic chain, including, for example, the Tuvalu volcanic islands in the Western Pacific.
    [Show full text]
  • SO225 MANIHIKI II Weekly Report No
    SO225 MANIHIKI II Weekly Report No. 1 R/V SONNE (19.11. – 25.11.2012) 10°13,6´S / 165°52,0´W The starting point of R/V SONNE expedition SO-225 was the port of Suva on Viti Levu island (Fiji). After 48 hours of travel the first group of scientists, engineers, and technicians from Germany arrived safe but somewhat tiered in Suva in the late evening of Saturday the 19th of November. There, the unloading of nine containers with scientific equipment for SO-225 and the mobilization of the remotely operated vehicle ROV Kiel 6000 kept us busy during the following days. In the evening of November 19th, the remaining scientists arrived in Suva, finally completing the scientific party of the SO-225 expedition. In tropical heat and occasionally heavy rain showers we managed to finish all port related cruise preparations on time thanks to the excellent support from the SONNE crew. Approximately one hour after a test program of the ROV Kiel 6000 was successfully completed, RV SONNE left Suva and headed towards the Manihiki Plateau, located ~1.000 nm to the northeast of Fiji in the area of the northern Cook Islands. Views of Suva/Fiji upon departure of R/V Sonne. RV Sonne cruises SO-224 and SO-225 are part of the cooperative project MANIHIKI II between GEOMAR and the Alfred Wegener Institute for Polar and Marine Research (AWI), funded by the German Ministry of Education and Research (BMBF). This multidisciplinary project continues previous research at the Manihiki Plateau conducted since 2007 (SO-193) on morphological, volcanological, geochemical, and geochronological studies and is now broadened by geophysical and paleoceanographic research foci.
    [Show full text]
  • Hawaii Hotspot (Crustal Plate Movement)
    Earth Science Name: Dynamic Crust Laboratory # 13 Hawaii Hotspot (Crustal Plate Movement) Introduction: Plate tectonics has been an accepted theory since the 1960’s. According to this theory, the crust of the Earth is composed of plates that move over the asthenosphere. There are two basic types of plates: heavy, thin and dense oceanic plates, which are primarily composed of basalt; and thick, lighter continental plates, which are comprised of silicate rocks (granite). Movement of the Pacific plate over the Hawaiian Hot Spot: The idea behind plate tectonics is that the crustal plates are moving with respect to one another over geologic time. The rates of movement of crustal plates can be determined by using data from the plate margins along the mid-ocean ridges, or at regions known as “HOTSPOTS” where the distance and age can be measured. The Hawaiian Islands are volcanic islands that are produced as superheated molten material rises upward from deep within the mantle. As the molten material breaks through weak places in the crustal plate a new “island” will form. Hawaii Crustal Plate Lab.doc 10/6/2013 1 Procedures: 1. Using Map 1 on this page and the absolute dates of lava in bold black numbers that represent millions of years before the present. Calculate the age difference between the islands and enter the data in the table on page 3. When there is more than one age on an island use an average! 2. Make distance measurements between the “dots” of each circle using the scale on the diagram. 3. Convert the distance from kilometers to “land” or “real” centimeters (NOT cm on the map!) by multiplying the distance in KM by 100,000 (which is the number of cm in 1 km).
    [Show full text]
  • Cook Islands Seabed Minerals : a Precautionary Approach to Mining / Gerald Mccormack
    Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 1° = primary 2° = secondary dt = dry tonnes M = million Ma = million years (from megaannus) for dates and duration mbsl = metres below sea level Mdt/y = million dry tonnes per year M/y = million per year ppm = parts per million t = tonne = 1,000kg (a.k.a. metric ton with symbol mt) wt = wet tonnes AABW = Antarctic Bottom Water BPA = Biodiversity Preservation Area CBD = Convention on Biological Diversity CISWF = Cook Islands Sovereign Wealth Fund CCD = Carbonate Compensation Depth CCZ = Clarion-Clipperton Zone DSC = Deep Sound Channel EEZ = Exclusive Economic Zone EIA - Environmental Impact Assessment GDP = Gross Domestic Product REY = Rare Earth Elements + Yttrium SBMA = Cook Islands Seabed Minerals Authority SMS = Seabed Massive Sulphides SPB = South Penrhyn Basin ISA = International Seabed Authority, a UN agency WCPFC = Western and Central Pacific Fisheries Commission Front cover An oblique view of the Cook Islands seafloor with the South Penrhyn Basin and its nodule fields in the foreground and the Manihiki Plateau in the background. Cook Islands Seabed Minerals a precautionary approach to mining Gerald McCormack second edition, with corrections Cook Islands Natural Heritage Trust Rarotonga 2016 Text and illustrations are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This means they are free for non-commercial use provided the author and illustrator are acknowledged. For other uses please contact the Cook Islands Natural Heritage Trust. The author extends his appreciation to the Minister of Natural Heritage, the Hon. Kiriau Turepu and to the Trust Chair, Ian Karika and his Board for their encouragement and support.
    [Show full text]