Introduction to Wireless LAN Measurements

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Wireless LAN Measurements Introduction to Wireless LAN Measurements From 802.11a to 802.11ac Introduction to Wireless LAN Measurements From 802.11a to 802.11ac 1 Visit www.ni.com/rf-academy Introduction to Wireless LAN Measurements From 802.11a to 802.11ac Table of Contents 1. History of Wireless LAN ....................................................................................................... 3 2. WLAN Physical Layer Characteristics ................................................................................ 5 Bands and Channels ...............................................................................................................................................5 Bandwidth Configurations .....................................................................................................................................5 Key WLAN Enabling Technologies ........................................................................................................................7 DSSS ......................................................................................................................................................................8 OFDM ....................................................................................................................................................................9 MIMO ..................................................................................................................................................................11 Theoretical Data Rate Calculation ........................................................................................................................16 Instrument Configuration for WLAN Measurements ........................................................................................20 3. Transmit Measurements ..................................................................................................... 22 Maximum Transmit Power ...................................................................................................................................22 Average Power .....................................................................................................................................................23 Peak Power ...........................................................................................................................................................23 Power Versus Time ..............................................................................................................................................24 Cross Power (MIMO) ..........................................................................................................................................25 Power-On and Power-Down Ramp ......................................................................................................................25 Modulation Quality ................................................................................................................................................25 Error Vector Magnitude .......................................................................................................................................26 Spectrum Measurements .......................................................................................................................................30 Spectrum Mask ....................................................................................................................................................30 DSSS Spectrum Mask ..........................................................................................................................................31 OFDM, HT, and VHT Spectrum Mask ................................................................................................................31 Carrier Suppression (DSSS) .................................................................................................................................33 Center Frequency Leakage (OFDM, HT and VHT) ............................................................................................34 4. Receiver Measurements ....................................................................................................... 37 Minimum Input Sensitivity ..................................................................................................................................37 Maximum Input Level .........................................................................................................................................38 Adjacent Channel Rejection .................................................................................................................................39 Nonadjacent Channel Rejection ...........................................................................................................................41 Received Channel Power Indicator ......................................................................................................................42 2 Visit www.ni.com/rf-academy Introduction to Wireless LAN Measurements From 802.11a to 802.11ac 1. History of Wireless LAN A basic Wireless Local Area Network (WLAN) network design uses the idea of an access point and clients. The access point or router is the equivalent of a base station in a cellular network. It acts as a bridge between the wired backbone and the wireless client traffic. Examples of client devices include desktops, laptops, smart phones, game consoles and printers. In 1997, the IEEE 802.11 Working Group approved IEEE 802.11 as the world’s first WLAN standard, which supported data rates of 1 Mb/s and 2 Mb/s. In 1999, two important amendments to the original 802.11 standard were ratified. • IEEE 802.11a-1999, known as 802.11a, allowed data rates of up to 54 Mb/s in the 5 GHz band using OFDM technology. • IEEE 802.11b-1999, known as 802.11b, allowed for up to 11 Mb/s in the 2.4 GHz unlicensed band by extending the use of direct sequence spread spectrum (DSSS) technology. 802.11a was the basis for the 802.11g amendment released in 2003, which used an identical orthogonal frequency division multiplexing (OFDM) physical layer structure but in the 2.4 GHz band. The need for 802.11g was driven by the slow adoption of 802.11a in the 5 GHz band, which contained limited channels for commercial use. The Wi-Fi Alliance (WFA), a consortium of industry-leading companies, was formed in 1999 to facilitate better interoperability, quality, and user experience for IEEE 802.11 devices from a broad range of vendors. Manufacturers of such devices can pursue the Wi-Fi certification with the alliance, which allows them to use the Wi-Fi logo, shown in Figure 1.1, on WLAN devices. Figure 1.1. Wi-Fi Logo Since the late 1990s, the IEEE 802.11 family of standards has continued to evolve to serve consumers with increasingly higher data rates. IEEE 802.11n was officially released in 2009, though products based on the draft specification were available as early as 2006. This standard marked a substantial data rate increase over the existing 802.11a, b, and g amendments. IEEE 802.11n allowed for wider channel bandwidths (40 MHz versus 20 MHz) and was the first WLAN standard to use multiple antennas for data streams: up to 4x4 multiple input, multiple output (MIMO). As a result, 802.11n increased the theoretical data throughput from 54 Mb/s to 300 Mb/s in a 20 MHz channel, and 600 Mb/s in a 40 MHz channel. In January 2012, a finalized 802.11ac draft amendment was released, outlining substantial improvements in data rates over 802.11n. The 802.11ac amendment provides a maximum theoretical data throughput of 6.93 Gb/s using channel bandwidths of up to 160 MHz, higher order modulation schemes, such as 256-QAM, and MIMO configurations of up to 8x8. Table 1.1 illustrates a brief summary of the evolution of the 802.11 standard. 3 Visit www.ni.com/rf-academy Introduction to Wireless LAN Measurements From 802.11a to 802.11ac Year Amendment Throughput1 Purpose 1997 802.11 2 Mb/s Original release. Included 1 Mb/s and 2Mb/s data rates in the 2.4GHz ISM band based on a physical layer (PHY). 1999 802.11a 54 Mb/s Added an OFDM-based PHY in the 5 GHz band. 1999 802.11b 11 Mb/s Extended the DSSS PHY from the original standard in the ISM band to a maximum of 11 Mb/s. 2003 802.11g 54 Mb/s Implemented the ODFM-based PHY (up to 54 Mb/s) introduced in 802.11a in the 2.4GHz ISM band. 2007 802.11-2007 Consolidated the 802.11 amendments with the base standard. 2009 802.11n 600 Mb/s Added MIMO options in both 2.4GHz and 5GHz bands. The maximum data rate can range from 54 Mb/s (mandatory) to 600 Mb/s (optional). 2012 802.11-2012 Consolidated the 802.11 amendments with the base standard. TBD 802.11ac 6.93 Gb/s Extended the HT (802.11n) specification in the 5GHz band to offer increased throughput through wider channel bandwidths, higher density modulation, and additional MIMO streams. Using an aggregate of stations, in conjunction with optional specifications, a theoretical throughput of 6.77 Gb/s is achievable. TDB 802.11ad 7 Gb/s A new standard to offer incredibly high theoretical throughput (7 Gb/s) in a 60 GHz band. Table 1.1 History of WLAN Standard Introduction 802.11 Naming Conventions Although engineers have long referred to the specific IEEE 802.11 amendments such as 802.11a,b, g, n, and ac to identify the specific technology they were using, the 2012 revision of the 802.11 specifications established specific naming criteria for each amendment. Table 1.2 lists the alternate name for each
Recommended publications
  • Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
    ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay.
    [Show full text]
  • Physical Layer Overview
    ELEC3030 (EL336) Computer Networks S Chen Physical Layer Overview • Physical layer forms the basis of all networks, and we will first revisit some of fundamental limits imposed on communication media by nature Recall a medium or physical channel has finite Spectrum bandwidth and is noisy, and this imposes a limit Channel bandwidth: on information rate over the channel → This H Hz is a fundamental consideration when designing f network speed or data rate 0 H Type of medium determines network technology → compare wireless network with optic network • Transmission media can be guided or unguided, and we will have a brief review of a variety of transmission media • Communication networks can be classified as switched and broadcast networks, and we will discuss a few examples • The term “physical layer protocol” as such is not used, but we will attempt to draw some common design considerations and exams a few “physical layer standards” 13 ELEC3030 (EL336) Computer Networks S Chen Rate Limit • A medium or channel is defined by its bandwidth H (Hz) and noise level which is specified by the signal-to-noise ratio S/N (dB) • Capability of a medium is determined by a physical quantity called channel capacity, defined as C = H log2(1 + S/N) bps • Network speed is usually given as data or information rate in bps, and every one wants a higher speed network: for example, with a 10 Mbps network, you may ask yourself why not 10 Gbps? • Given data rate fd (bps), the actual transmission or baud rate fb (Hz) over the medium is often different to fd • This is for
    [Show full text]
  • Telematics Chapter 3: Physical Layer
    Telematics User Server watching with video Chapter 3: Physical Layer video clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Data Link Layer Data Link Layer Data Link Layer Physical Layer Physical Layer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Computer Systems and Telematics (CST) Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Theoretical Basis for Data Communication ● Analog Data and Digital Signals ● Data Encoding ● Transmission Media ● Guided Transmission Media ● Wireless Transmission (see Mobile Communications) ● The Last Mile Problem ● Multiplexing ● Integrated Services Digital Network (ISDN) ● Digital Subscriber Line (DSL) ● Mobile Telephone System Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.3 Design Issues ● Connection parameters ● mechanical OSI Reference Model ● electric and electronic Application Layer ● functional and procedural Presentation Layer ● More detailed ● Physical transmission medium (copper cable, Session Layer optical fiber, radio, ...) ● Pin usage in network connectors Transport Layer ● Representation of raw bits (code, voltage,…) Network Layer ● Data rate ● Control of bit flow: Data Link Layer ● serial or parallel transmission of bits Physical Layer ● synchronous or asynchronous transmission ● simplex, half-duplex, or full-duplex transmission mode Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.4 Design Issues Transmitter Receiver Source Transmission System Destination NIC NIC Input Abcdef djasdja dak jd ashda kshd akjsd asdkjhasjd as kdjh askjda Univ.-Prof.
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • Physical Layer Compliance Testing for 1000BASE-T Ethernet
    Physical Layer Compliance Testing for 1000BASE-T Ethernet –– APPLICATION NOTE Physical Layer Compliance Testing for 1000BASE-T Ethernet APPLICATION NOTE Engineers designing or validating the 1000BASE-T Ethernet 1000BASE-T Physical Layer physical layer on their products need to perform a wide range Compliance Standards of tests, quickly, reliably and efficiently. This application note describes the tests that ensure validation, the challenges To ensure reliable information transmission over a network, faced while testing multi-level signals, and how oscilloscope- industry standards specify requirements for the network’s resident test software enables significant efficiency physical layer. The IEEE 802.3 standard defines an array of improvements with its wide range of tests, including return compliance tests for 1000BASE-T physical layer. These tests loss, fast validation cycles, and high reliability. are performed by placing the device under test in test modes specified in the standard. The Basics of 1000BASE-T Testing While it is recommended to perform as many tests as Popularly known as Gigabit Ethernet, 1000BASE-T has been possible, the following core tests are critical for compliance: experiencing rapid growth. With only minimal changes to IEEE 802.3 Test Mode Test the legacy cable structure, it offers 100 times faster data Reference rates than 10BASE-T Ethernet signals. Gigabit Ethernet, in Peak 40.6.1.2.1 combination with Fast Ethernet and switched Ethernet, offers Test Mode-1 Droof 40.6.1.2.2 Template 40.6.1.2.3 a cost-effective alternative to slow networks. Test Mode-2 Master Jitter 40.6.1.2.5 Test Mode-3 Slave Jitter 1000BASE-T uses four signal pairs for full-duplex Distortion 40.6.1.2.4 transmission and reception over CAT-5 balanced cabling.
    [Show full text]
  • IBOC AM Transmission Specification Ibiquity Digital Corporation
    IBOC AM Transmission Specification November 2001 iBiquity Digital Corporation 8865 Stanford Boulevard, Suite 202 20 Independence Boulevard Columbia, Maryland 21045 Warren, New Jersey 07059 AM Transmission Specification © 2001 iBiquity Digital Corporation 11/08/01 Doc. No. SY_TN_5010 Rev. 01 (410) 872-1530 (908) 580-7000 Table of Contents Contents 1 SCOPE ..............................................................................................................................................................1 2 ABBREVIATIONS, SYMBOLS, AND CONVENTIONS .................................................................................1 2.1 Introduction ...............................................................................................................................................1 2.2 Abbreviations and Acronyms ....................................................................................................................1 2.3 Presentation Conventions ..........................................................................................................................1 2.4 Mathematical Symbols ..............................................................................................................................1 2.4.1 Variable Naming Conventions ..............................................................................................................1 2.4.2 Arithmetic Operators.............................................................................................................................1 2.5
    [Show full text]
  • Structure of IEEE 802.11 Packets at Various Physical Layers
    Appendix A: Structure of IEEE 802.11 Packets at Various Physical Layers This appendix gives a detailed description of the structure of packets in IEEE 802.11 for the different physical layers. 1. Packet Format of Frequency Hopping Spread-spectrum Physical Layer (FHSS PHY) The packet is made up of the following elements (Figure A.1): 1.1 Preamble It depends on the physical layer and includes: – Synch: a sequence of 80 bits alterning 0 and 1, used by the physical circuits to select the correct antenna (if more than one are in use), and correct offsets of frequency and synchronization. – SFD: start frame delimiter consists of a pattern of 16 bits: 0000 1100 1011 1101, used to define the beginning of the frame. 1.2 Physical Layer Convergence Protocol Header The Physical Layer Convergence Protocol (PLCP) header is always transmitted at 1 Mbps and carries some logical information used by the physical layer to decode the frame: – Length of word of PLCP PDU (PLW): representing the number of bytes in the packet, useful to the physical layer to detect correctly the end of the packet. – Flag of signalization PLCP (PSF): indicating the supported rate going from 1 to 4.5 Mbps with steps of 0.5 Mbps. Even though the standard gives the combinations of bits for PSF (see Table A.1) to support eight different rates, only the modulations for 1 and 2 Mbps have been defined. – Control error field (HEC): CRC field for error detection of 16 bits (or 32 bits). The polynomial generator used is G(x)=x16 + x12 + x5 +1.
    [Show full text]
  • High-Level Data Link Control
    ELEC3030 (EL336) Computer Networks S Chen High-Level Data Link Control • This class of data link layer protocols includes High-level Data Link Control (HDLC), Link Access Procedure Balanced (LAPB) for X.25, Link Access Procedure for D-channel (LAPD) for ISDN, and Logic Link Control (LLC) for FDDI • The frame format is: Flag Address Control Data FCS Flag Note that address and control bits 8 8 8 variable 16 8 can be extended to 16 bits, so bit position 12 3 4 5 6 7 8 N(S)=send sequence number N(R)=receive sequence number that sequence number is 7-bit Information: 0 N(S) P/F N(R) S=supervisory function bits P/F • Frame flag: 01111110, so bit Supervisory: 1 0 S N(R) M=unumbered function bits stuffing is used Unumbered: 1 1 M P/F M P/F=poll/final bit • Address: For multipoint operation, it is used to identify the terminal that transmits or receives the frame and, in point-to-point link, it is used to distinguish Commands from Responses (2nd bit for C/R: 0/1). The address is now extended to 16 bits (1st bit indicates long/short 16/8 bits) • Checksum: FCS contains the remainder of a 16-bit CRC calculation of the frame. It may be extended to 32 bits, using a 32-bit CRC • Control: Three types of frames, I, S and U frames. The old protocol uses a sliding window with 3-bit sequence number and the maximum window size is N = 7. The control field is now extended to 16 bits with 7-bit sequence number 60 ELEC3030 (EL336) Computer Networks S Chen HDLC (continue) • I-frames: carry user data.
    [Show full text]
  • On the Spectral and Power Requirements for Ultra-Wideband Transmission
    MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com On the Spectral and Power Requirements for Ultra-Wideband Transmission Hongsan Sheng, Philip Orlik, Alexander M. Haimovich, Leonard J. Cimini, Jr, Jinyun Zhang TR2003-66 December 2003 Abstract UWB systems based on impulse radio have the potential to provide very high data rates over short distances. In this paper, a new pulse shape is presented that satisfies the FCC spectral mask. Using this pulse, the link budget is calculated to quantify the relationship between data rate and distance. It is shown that UWB can be a good candidate for high rate transmission over short ranges, with the capability for reliably transmitting 100 Mbps over distances at about 10 meters. IEEE International Conference on Communications (ICC) This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c Mitsubishi Electric Research Laboratories, Inc., 2003 201 Broadway, Cambridge, Massachusetts 02139 MERLCoverPageSide2 On the Spectral and Power Requirements for Ultra-Wideband Transmission Hongsan Sheng† Philip Orlik‡ Alexander M. Haimovich† Leonard J.
    [Show full text]
  • Data Link Layer Review
    Data Link Layer Review Advanced Computer Networks Data Link Layer • Provides a well-defined service interface to the network layer. • Determines how the bits of the physical layer are grouped into frames (framing). • Deals with transmission errors (CRC and ARQ). • Regulates the flow of frames. • Performs general link layer management. Advanced Computer Networks Data Link Layer 2 Packets Packets (a) Data link Data link Layer Layer A Physical Frames Physical B Layer Layer (b) 1 2 3 2 1 1 2 3 2 1 Medium 2 A B 1 1 Physical layer entity 3 Network layer entity 2 Data link layer entity Leon-Garcia & Widjaja: Communication Networks Advanced Computer Networks Data Link Layer 3 End to End Transport Layer ACK/NAK 1 2 3 4 5 Data Data Data Data Hop by Hop Data Data Data Data 1 2 3 4 5 ACK/ ACK/ ACK/ ACK/ NAK NAK NAK NAK Leon-Garcia & Widjaja: Communication Networks Advanced Computer Networks Data Link Layer 4 Tanenbaum’s Data Link Layer Treatment • Concerned with communication between two adjacent nodes in the subnet (node to node). • Assumptions: – The bits are delivered in the order sent. – A rigid interface between the HOST and the node the communications policy and the Host protocol (with OS effects) can evolve separately. – He uses a simplified model. Advanced Computer Networks Data Link Layer 5 LayerLayer 4 4 Host Host A B Layer 2 Node Node 1 2 frame Tanenbaum’s Data Link Layer Model Assume the sending Host has infinite supply of messages. A node constructs a frame from a single packet message.
    [Show full text]
  • An Introduction to Bluetooth Low Energy Robin Heydon, Senior Director, Technology Qualcomm Technologies International, Ltd
    An Introduction to Bluetooth low energy Robin Heydon, Senior Director, Technology Qualcomm Technologies International, Ltd. Agenda What is Bluetooth low energy What are the important features? How does it work? What are the next steps? What is it good for today? What else can you do with it? 2 What is low energy? It is a new technology blank sheet of paper design optimized for ultra low power different to Bluetooth classic 3 New Technology? Yes efficient discovery / connection procedures very short packets asymmetric design for peripherals client server architecture No reuse existing BR radio architecture reuse existing HCI logical and physical transports reuse existing L2CAP packets 4 Basic Concepts Design for success able to discover thousands of devices in local area unlimited number of slaves connected to a master unlimited number of masters state of the art encryption security including privacy / authentication / authorization class leading robustness, data integrity future proof 5 Basic Concepts Everything has STATE devices expose their state these are servers Clients can use the state exposed on servers read it – get current temperature write it – increase set point temperature for room Servers can tell clients when state updates notify it – temperature up to set point 6 Stack Architecture Applications Apps Generic Access Profile Generic Attribute Profile Host Attribute Protocol Security Manager Logical Link Control and Adaptation Protocol Host Controller Interface Link Layer Direct Test Mode Controller Physical Layer 7 Physical
    [Show full text]
  • Chapter 6: Medium Access Control Layer
    Chapter 6: Medium Access Control Layer Chapter 6: Roadmap " Overview! " Wireless MAC protocols! " Carrier Sense Multiple Access! " Multiple Access with Collision Avoidance (MACA) and MACAW! " MACA By Invitation! " IEEE 802.11! " IEEE 802.15.4 and ZigBee! " Characteristics of MAC Protocols in Sensor Networks! " Energy Efficiency! " Scalability! " Adaptability! " Low Latency and Predictability! " Reliability! " Contention-Free MAC Protocols! " Contention-Based MAC Protocols! " Hybrid MAC Protocols! Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 2! Medium Access Control " In most networks, multiple nodes share a communication medium for transmitting their data packets! " The medium access control (MAC) protocol is primarily responsible for regulating access to the shared medium! " The choice of MAC protocol has a direct bearing on the reliability and efficiency of network transmissions! " due to errors and interferences in wireless communications and to other challenges! " Energy efficiency also affects the design of the MAC protocol! " trade energy efficiency for increased latency or a reduction in throughput or fairness! Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 3! 1! Overview " Responsibilities of MAC layer include:! " decide when a node accesses a shared medium! " resolve any potential conflicts between competing nodes! " correct communication errors occurring at the physical layer! " perform other activities such as framing, addressing, and flow control! " Second layer of the OSI reference model (data link layer) or the IEEE 802 reference model (which divides data link layer into logical link control and medium access control layer)! Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.
    [Show full text]