An Innovative Approach for Long-Term Environmental Noise Measurement: RUMEUR Network in the Paris Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laser Linewidth, Frequency Noise and Measurement
Laser Linewidth, Frequency Noise and Measurement WHITEPAPER | MARCH 2021 OPTICAL SENSING Yihong Chen, Hank Blauvelt EMCORE Corporation, Alhambra, CA, USA LASER LINEWIDTH AND FREQUENCY NOISE Frequency Noise Power Spectrum Density SPECTRUM DENSITY Frequency noise power spectrum density reveals detailed information about phase noise of a laser, which is the root Single Frequency Laser and Frequency (phase) cause of laser spectral broadening. In principle, laser line Noise shape can be constructed from frequency noise power Ideally, a single frequency laser operates at single spectrum density although in most cases it can only be frequency with zero linewidth. In a real world, however, a done numerically. Laser linewidth can be extracted. laser has a finite linewidth because of phase fluctuation, Correlation between laser line shape and which causes instantaneous frequency shifted away from frequency noise power spectrum density (ref the central frequency: δν(t) = (1/2π) dφ/dt. [1]) Linewidth Laser linewidth is an important parameter for characterizing the purity of wavelength (frequency) and coherence of a Graphic (Heading 4-Subhead Black) light source. Typically, laser linewidth is defined as Full Width at Half-Maximum (FWHM), or 3 dB bandwidth (SEE FIGURE 1) Direct optical spectrum measurements using a grating Equation (1) is difficult to calculate, but a based optical spectrum analyzer can only measure the simpler expression gives a good approximation laser line shape with resolution down to ~pm range, which (ref [2]) corresponds to GHz level. Indirect linewidth measurement An effective integrated linewidth ∆_ can be found by can be done through self-heterodyne/homodyne technique solving the equation: or measuring frequency noise using frequency discriminator. -
Best LIFE Environment Projects 2015
RONM VI EN N T E P E R O F I J L E C T T S S E B Best LIFE Environment projects 2015 LIFE Environment Environment LIFE ENVIRONMENT | BEST LIFE ENVIRONMENT PROJECTS 2015 EUROPEAN COMMISSION ENVIRONMENT DIRECTORATE-GENERAL LIFE (“The Financial Instrument for the Environment”) is a programme launched by the European Commission and coordinated by the Environment and Climate Action Directorates-General. The Commission has delegated the im- plementation of many components of the LIFE programme to the Executive Agency for Small and Medium-sized Enterprises (EASME). The contents of the publication “Best LIFE Environment Projects 2015” do not necessarily reflect the opinions of the institutions of the European Union. Authors: Gabriella Camarsa (Environment expert), Justin Toland, Jon Eldridge, Wendy Jones, Joanne Potter, Stephen Jones, Stephen Nottingham, Marianne Geater, Isabelle Rogerson, Derek McGlynn, Carlos de la Paz (NEEMO EEIG), Eva Martínez (NEEMO EEIG, Communications Team Coordinator). Managing Editor: Hervé Martin (European Commission, Environment DG, LIFE D.4). LIFE Focus series coordination: Simon Goss (LIFE Communications Coordinator), Valerie O’Brien (Environment DG, Publications Coordinator). Technical assistance: Chris People, Luule Sinnisov, Cristóbal Gines (NEEMO EEIG). The following people also worked on this issue: Davide Messina, François Delceuillerie (Environment DG, LIFE Unit), Giulia Carboni (EASME, LIFE Unit). Production: Monique Braem (NEEMO EEIG). Graphic design: Daniel Renders, Anita Cortés (NEEMO EEIG). Photos database: Sophie Brynart (NEEMO EEIG). Acknowledgements: Thanks to all LIFE project beneficiaries who contributed comments, photos and other useful material for this report. Photos: Unless otherwise specified; photos are from the respective pro- jects. For reproduction or use of these photos, permission must be sought directly from the copyright holders. -
Time-Series Prediction of Environmental Noise for Urban Iot Based on Long Short-Term Memory Recurrent Neural Network
applied sciences Article Time-Series Prediction of Environmental Noise for Urban IoT Based on Long Short-Term Memory Recurrent Neural Network Xueqi Zhang 1,2 , Meng Zhao 1,2 and Rencai Dong 1,* 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; [email protected] (X.Z.); [email protected] (M.Z.) 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-010-62849112 Received: 12 January 2020; Accepted: 6 February 2020; Published: 8 February 2020 Abstract: Noise pollution is one of the major urban environmental pollutions, and it is increasingly becoming a matter of crucial public concern. Monitoring and predicting environmental noise are of great significance for the prevention and control of noise pollution. With the advent of the Internet of Things (IoT) technology, urban noise monitoring is emerging in the direction of a small interval, long time, and large data amount, which is difficult to model and predict with traditional methods. In this study, an IoT-based noise monitoring system was deployed to acquire the environmental noise data, and a two-layer long short-term memory (LSTM) network was proposed for the prediction of environmental noise under the condition of large data volume. The optimal hyperparameters were selected through testing, and the raw data sets were processed. The urban environmental noise was predicted at time intervals of 1 s, 1 min, 10 min, and 30 min, and their performances were compared with three classic predictive models: random walk (RW), stacked autoencoder (SAE), and support vector machine (SVM). -
Bernoulli-Gaussian Distribution with Memory As a Model for Power Line Communication Noise Victor Fernandes, Weiler A
XXXV SIMPOSIO´ BRASILEIRO DE TELECOMUNICAC¸ OES˜ E PROCESSAMENTO DE SINAIS - SBrT2017, 3-6 DE SETEMBRO DE 2017, SAO˜ PEDRO, SP Bernoulli-Gaussian Distribution with Memory as a Model for Power Line Communication Noise Victor Fernandes, Weiler A. Finamore, Mois´es V. Ribeiro, Ninoslav Marina, and Jovan Karamachoski Abstract— The adoption of Additive Bernoulli-Gaussian Noise very useful to come up with a as simple as possible models (ABGN) as an additive noise model for Power Line Commu- of PLC noise, similar to the additive white Gaussian noise nication (PLC) systems is the subject of this paper. ABGN is a (AWGN) model. model that for a fraction of time is a low power noise and for the remaining time is a high power (impulsive) noise. In this context, In this regard, we introduce the definition of a simple and we investigate the usefulness of the ABGN as a model for the useful mathematical model for the noise perturbing the data additive noise in PLC systems, using samples of noise registered transmission over PLC channel that would be a helpful tool. during a measurement campaign. A general procedure to find the With this goal in mind, an investigation of the usefulness of model parameters, namely, the noise power and the impulsiveness what we call additive Bernoulli-Gaussian noise (ABGN) as a factor is presented. A strategy to assess the noise memory, using LDPC codes, is also examined and we came to the conclusion that model for the noise perturbing the digital communication over ABGN with memory is a consistent model that can be used as for PLC channel is discussed. -
Fault Location in Power Distribution Systems Via Deep Graph
Fault Location in Power Distribution Systems via Deep Graph Convolutional Networks Kunjin Chen, Jun Hu, Member, IEEE, Yu Zhang, Member, IEEE, Zhanqing Yu, Member, IEEE, and Jinliang He, Fellow, IEEE Abstract—This paper develops a novel graph convolutional solving a set of nonlinear equations. To solve the multiple network (GCN) framework for fault location in power distri- estimation problem, it is proposed to use estimated fault bution networks. The proposed approach integrates multiple currents in all phases including the healthy phase to find the measurements at different buses while taking system topology into account. The effectiveness of the GCN model is corroborated faulty feeder and the location of the fault [2]. It is pointed by the IEEE 123 bus benchmark system. Simulation results show out in [15] that the accuracy of impedance-based methods can that the GCN model significantly outperforms other widely-used be affected by factors including fault type, unbalanced loads, machine learning schemes with very high fault location accuracy. heterogeneity of overhead lines, measurement errors, etc. In addition, the proposed approach is robust to measurement When a fault occurs in a distribution system, voltage drops noise and data loss errors. Data visualization results of two com- peting neural networks are presented to explore the mechanism can occur at all buses. The voltage drop characteristics for of GCNs superior performance. A data augmentation procedure the whole system vary with different fault locations. Thus, the is proposed to increase the robustness of the model under various voltage measurements on certain buses can be used to identify levels of noise and data loss errors. -
Unit 2. Lesson 5. Noise Pollution
ACOUSTICAL OCEANOGRAPHY Unit 2. Lesson 5. Noise Pollution Objectives: Upon completion of this unit, students will understand that noise pollution is more than loud noises. They will also learn what causes hearing damage and that animals, as well as humans, are subject to hearing loss. Vocabulary words: litter, pollution, loudness-related hearing loss, blast trauma What is Noise Pollution? Litter on the side of the road, is thought to be a sound so junk floating in the water, and intense that it could shatter smokes spewing into the glass, or crack plaster in rooms atmosphere from factory or on buildings. That is not so. smokestacks are obvious forms It can come from sources such of pollution. There are other as jet airplanes, constant types of pollution that are not droning of traffic, motorcycles, as obvious. Noise pollution is high-power equipment, or loud one form. What is noise music. pollution? It is defined as sounds, or noises, that are loud, annoying and harmful to the ear. Often, sound pollution How is Noise Pollution Harmful? Sound energy is transferred When sound reaches the through compressions and human ear, it causes structures rarefactions. to vibrate. Intense vibrations (Reference can rupture the eardrum, but lesson 1, if more often, loudness-related necessary.) hearing loss usually develops If the over time. When sound enters intensity is the ear, it is transferred to the very large, it can harm human brain as a nerve impulse. Each and animal ears, and do nerve is composed of tiny nerve damage to physical structures. fibers, surrounded by special fluid within the ear. -
EP Signal to Noise in Emp 2
TN0000909 – Former Doc. No. TECN1852625 – New Doc. No. Rev. 02 Page 1 of 5 Understanding the EP Signal-to-Noise Calculation in Empower 2 This document: • Provides a definition of the 2005 European Pharmacopeia (EP) signal-to-noise ratio • Describes the built-in EP S/N calculation in Empower™ 2 • Describes the custom field necessary to determine EP S/N using noise from a blank injection. 2005 European Pharmacopeia (EP) Definition: Signal-to-Noise Ratio The signal-to-noise ratio (S/N) influences the precision of quantification and is calculated by the equation: 2H S/N = λ where: H = Height of the peak (Figure 1) corresponding to the component concerned, in the chromatogram obtained with the prescribed reference solution, measured from the maximum of the peak to the extrapolated baseline of the signal observed over a distance equal to 20 times the width at half-height. λ = Range of the background noise in a chromatogram obtained after injection or application of a blank, observed over a distance equal to 20 times the width at half- height of the peak in the chromatogram obtained with the prescribed reference solution and, if possible, situated equally around the place where this peak would be found. Figure 1 – Peak Height Measurement TN0000909 – Former Doc. No. TECN1852625 – New Doc. No. Rev. 02 Page 2 of 5 In Empower 2 software, the EP Signal-to-Noise (EP S/N) is determined in an automated fashion and does not require a blank injection. The intention of this calculation is to preserve the sense of the EP calculation without requiring a separate blank injection. -
Monitoring of Sound Pressure Level
1. INTRODUCTION Noise is one of the main environmental problems of modern life and it is inseparable from human activities, urban and technological growth. National and international standards provide for a minimum of acoustic comfort for coexistence between man and industrial development. That's why a study of noise emission and environmental noise at the PALAGUA - CAIPAL Field was carried out; samples of measurements were taken in specific (punctual) manner to meet the sound pressure level (SPL) with a duration of five minutes per sample/measurement for noise measurements and 15 minutes for ambient or environmental noise in each direction: (north, east, south, west and vertical). The result of these measurements was compared with the maximum permissible noise emission and environmental noise standards stated in Resolution 627 of 2006 Ministry of Environment, Housing, and Territorial Development (MAVDT) and thus it was verified that they comply with environmental regulations in the PALAGUA - CAIPAL Field. 1 INFORME DE LABORATORIO 0860-09-ECO. NIVELES DE PRESIÓN SONORA EN EL AREA DE PRODUCCION CAMPO PALAGUA - CAIPAL PUERTO BOYACA, BOYACA. NOVIEMBRE DE 2009. 2. OBJECTIVES • To evaluate the emission of noise and environmental noise encountered in the PALAGUA - CAIPAL Gas Field area, located in the municipality of Puerto Boyacá, Boyacá. • To compare the obtained sound pressure levels at points monitored, with the permissible limits of resolution 627 of the Ministry of Environment, SECTOR C: RESTRICTED INTERMEDIATE NOISE, which allows a maximum of 75 dB in the daytime (7:01 to 21:00) and 70 dB in the night shift (21:01 to 7: 00 hours) 2 INFORME DE LABORATORIO 0860-09-ECO. -
Measurement and Estimation of the Mode Partition Coefficient K
Measurement and Estimation of the Mode Partition Coefficient k Rick Pimpinella and Jose Castro IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force November 2012, San Antonio, TX Background & Objective Background: Mode Partition Noise in MMF channel links is caused by pulse-to-pulse power fluctuations among VCSEL modes and differential delay due to dispersion in the fiber (Power independent penalty) “k” is an index used to describe the degree of mode fluctuations and takes on a value between 0 and 1, called the mode partition coefficient [1,2] Currently the IEEE link model assumes k = 0.3 It has been discussed that a new link model requires validation of k The measurement & estimation of k is challenging due to several conditions: Low sensitivity of detectors at 850nm The presence of additional noise components in VCSEL-MMF channels (RIN, MN, Jitter – intensity fluctuations, reflection noise, thermal noise, …) Differences in VCSEL designs Objective: Provide an experimental estimate of the value of k for VCSELs Additional work in progress 2 MPN Theory Originally derived for Fabry-Perot lasers and SMF [3] Assumptions: Total power of all modes carried by each pulse is constant Power fluctuations among modes are anti-correlated Mechanism: When modes (different wavelengths) travel at the same speed their fluctuations remain anti-correlated and the resultant pulse-to-pulse noise is zero. When modes travel in a dispersive medium the modes undergo different delays resulting in pulse distortions and a noise penalty. Example: Two VCSEL modes transmitted in a SMF undergoing chromatic dispersion: START END Optical Waveform @ Detector START t END With mode power fluctuations Decision Region Shorter Wavelength Time (arrival) t slope DL Time (arrival) Longer Wavelength Time (arrival) 3 Example of Intensity Fluctuation among VCSEL modes MPN can be observed using an Optical Spectrum Analyzer (OSA). -
The Psychophysiological Implications of Soundscape: a Systematic Review of Empirical Literature and a Research Agenda
International Journal of Environmental Research and Public Health Review The Psychophysiological Implications of Soundscape: A Systematic Review of Empirical Literature and a Research Agenda Mercede Erfanian * , Andrew J. Mitchell , Jian Kang * and Francesco Aletta UCL Institute for Environmental Design and Engineering, The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London WC1H 0NN, UK; [email protected] (A.J.M.); [email protected] (F.A.) * Correspondence: [email protected] (M.E.); [email protected] (J.K.); Tel.: +44-(0)20-3108-7338 (J.K.) Received: 16 September 2019; Accepted: 19 September 2019; Published: 21 September 2019 Abstract: The soundscape is defined by the International Standard Organization (ISO) 12913-1 as the human’s perception of the acoustic environment, in context, accompanying physiological and psychological responses. Previous research is synthesized with studies designed to investigate soundscape at the ‘unconscious’ level in an effort to more specifically conceptualize biomarkers of the soundscape. This review aims firstly, to investigate the consistency of methodologies applied for the investigation of physiological aspects of soundscape; secondly, to underline the feasibility of physiological markers as biomarkers of soundscape; and finally, to explore the association between the physiological responses and the well-founded psychological components of the soundscape which are continually advancing. For this review, Web of Science, PubMed, Scopus, and -
Introduction to Noise Measurements on Business Machines (Bo0125)
BO 0125-11 Introduction to Noise Measurements on Business Machines by Roger Upton, B.Sc. Introduction In recent years, manufacturers of DIN 45 635 pt.19 ization committees in the pursuit of business machines, that is computing ANSI Si.29, (soon to be superced- harmonization, meaning that the stan- and office machines, have come under ed by ANSI S12.10) dards agree with each other in the increasing pressure to provide noise ECMA 74 bulk of their requirements. This appli- data on their products. For instance, it ISO/DIS 7779 cation note first discusses some acous- is becoming increasingly common to tic measurement parameters, and then see noise levels advertised, particular- With four separate standards in ex- the measurements required by the ly for printers. A number of standards istence, one might expect some con- various standards. Finally, it describes have been written governing how such siderable divergence in their require- some Briiel & Kjaer measurement sys- noise measurements should be made, ments. However, there has been close terns capable of making the required namely: contact between the various standard- measurements. Introduction to Noise Measurement Parameters The standards referred to in the previous section call for measure• ments of sound power and sound pres• sure. These measurements can then be used in a variety of ways, such as noise labelling, prediction of installation noise levels, comparison of noise emis• sions of products, and production con• trol. Sound power and sound pressure are fundamentally different quanti• ties. Sound power is a measure of the ability of a device to make noise. It is independent of the acoustic environ• ment. -
Monitoring the Acoustic Performance of Low- Noise Pavements
Monitoring the acoustic performance of low- noise pavements Carlos Ribeiro Bruitparif, France. Fanny Mietlicki Bruitparif, France. Matthieu Sineau Bruitparif, France. Jérôme Lefebvre City of Paris, France. Kevin Ibtaten City of Paris, France. Summary In 2012, the City of Paris began an experiment on a 200 m section of the Paris ring road to test the use of low-noise pavement surfaces and their acoustic and mechanical durability over time, in a context of heavy road traffic. At the end of the HARMONICA project supported by the European LIFE project, Bruitparif maintained a permanent noise measurement station in order to monitor the acoustic efficiency of the pavement over several years. Similar follow-ups have recently been implemented by Bruitparif in the vicinity of dwellings near major road infrastructures crossing Ile- de-France territory, such as the A4 and A6 motorways. The operation of the permanent measurement stations will allow the acoustic performance of the new pavements to be monitored over time. Bruitparif is a partner in the European LIFE "COOL AND LOW NOISE ASPHALT" project led by the City of Paris. The aim of this project is to test three innovative asphalt pavement formulas to fight against noise pollution and global warming at three sites in Paris that are heavily exposed to road noise. Asphalt mixes combine sound, thermal and mechanical properties, in particular durability. 1. Introduction than 1.2 million vehicles with up to 270,000 vehicles per day in some places): Reducing noise generated by road traffic in urban x the publication by Bruitparif of the results of areas involves a combination of several actions.