GF-2626 Active Substance: Sulfoxaflor 120 G/L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessing the Vulnerability of Aquatic Macroinvertebrates to Climate Warming in a Mountainous Watershed: Supplementing Presence-Only Data with Species Traits
water Article Assessing the Vulnerability of Aquatic Macroinvertebrates to Climate Warming in a Mountainous Watershed: Supplementing Presence-Only Data with Species Traits Anne-Laure Besacier Monbertrand 1, Pablo Timoner 2 , Kazi Rahman 2, Paolo Burlando 3, Simone Fatichi 3, Yves Gonseth 4, Frédéric Moser 2, Emmanuel Castella 1 and Anthony Lehmann 2,* 1 Aquatic Ecology Group, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Institute for Environmental Sciences, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; [email protected] (A.-L.B.M.); [email protected] (E.C.) 2 enviroSPACE Group, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Institute for Environmental Sciences, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; [email protected] (P.T.); [email protected] (K.R.); [email protected] (F.M.) 3 ETH Zürich, Institute of Environmental Engineering, HIL D 22.3, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland; [email protected] (P.B.); [email protected] (S.F.) 4 Swiss Biological records Center, Passage Max-Meuron 6, CH-2000 Neuchâtel, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-22-379-0021 Received: 17 November 2018; Accepted: 22 March 2019; Published: 27 March 2019 Abstract: Mountainous running water ecosystems are vulnerable to climate change with major changes coming from warming temperatures. Species distribution will be affected and some species are anticipated to be winners (increasing their range) or losers (at risk of extinction). Climate change vulnerability is seldom integrated when assessing threat status for lists of species at risk (Red Lists), even though this might appear an important addition in the current context. -
Genome Sequence of the Small Brown Planthopper, Laodelphax Striatellus
GigaScience, 6, 2017, 1–12 doi: 10.1093/gigascience/gix109 Advance Access Publication Date: 10 November 2017 Data Note DATA NOTE Genome sequence of the small brown planthopper, Laodelphax striatellus Junjie Zhu1,4,†,FengJiang2,†, Xianhui Wang1, Pengcheng Yang2, Yanyuan Bao 3, Wan Zhao1,WeiWang1, Hong Lu1, Qianshuo Wang1,NaCui1, Jing Li1, Xiaofang Chen1, Lan Luo1,JintingYu1, Le Kang1,2,∗ and Feng Cui1,∗ 1State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, 2Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China, 3State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China and 4University of Chinese Academy of Sciences, Beijing 100049, China ∗Correspondence address. Dr. Feng Cui, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Tel: +86-10-64807218; Fax: 86-10-64807099; E-mail: [email protected]; Dr. Le Kang, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Tel: +86-10-64807219; Fax: 86-10-64807099; E-mail: [email protected] †Equal contribution Abstract Background: Laodelphax striatellus Fallen´ (Hemiptera: Delphacidae) is one of the most destructive rice pests. L. striatellus is different from 2 other rice planthoppers with a released genome sequence, Sogatella furcifera and Nilaparvata lugens,inmany biological characteristics, such as host range, dispersal capacity, and vectoring plant viruses. Deciphering the genome of L. -
Regulation of RNA Interference Pathways in the Insect Vector Laodelphax Striatellus by Viral Proteins of Rice Stripe Virus
viruses Article Regulation of RNA Interference Pathways in the Insect Vector Laodelphax striatellus by Viral Proteins of Rice Stripe Virus Yan Xiao 1,2,†, Qiong Li 1,3,†, Wei Wang 1, Yumei Fu 4 and Feng Cui 1,3,* 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (Y.X.); [email protected] (Q.L.); [email protected] (W.W.) 2 College of Life Sciences, Hebei University, Baoding 071002, China 3 CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: RNA interference (RNAi), especially the small interfering RNA (siRNA) and microRNA (miRNA) pathways, plays an important role in defending against viruses in plants and insects. However, how insect-transmitted phytoviruses regulate the RNAi-mediated antiviral response in vector insects has barely been uncovered. In this study, we explored the interaction between rice stripe virus (RSV) and the miRNA and siRNA pathways of the small brown planthopper, which is a vector insect. The transcript and protein levels of key genes in the two RNAi pathways did not change during the RSV infection process. When the expression of insect Ago1, Ago2, or Translin was silenced by the injection of double-stranded RNAs targeting these genes, viral replication was Citation: Xiao, Y.; Li, Q.; Wang, W.; promoted with Ago2 silencing but inhibited with Translin silencing. -
CONTRIBUTIONS to a REVISED SPECIES CONSPECT of the EPHEMEROPTERA FAUNA from ROMANIA (Mayfliesyst)
Studii şi Cercetări Mai 2014 Biologie 23/2 20-30 Universitatea”Vasile Alecsandri” din Bacău CONTRIBUTIONS TO A REVISED SPECIES CONSPECT OF THE EPHEMEROPTERA FAUNA FROM ROMANIA (mayfliesyst) Florian S. Prisecaru, Ionel Tabacaru, Maria Prisecaru, Ionuţ Stoica, Maria Călin Key words: Ephemeroptetera, systematic classification, new species, Romania. INTRODUCTION wrote the chapter Order Ephemeroptera (2007, pp.235-236) and mentioned 108 species in the list of In the volume „Lista faunistică a României Ephemeroptera from our country, indicating the (specii terestre şi de apă dulce) [List of Romanian authors of their citation. It is the first time since the fauna (terrestrial and freshwater species)], editor-in- publication of a fauna volume (Bogoescu, 1958) that chief Anna Oana Moldovan from "Emil Racovita" such a list has been made public. Here is this list Institute of Speleology, Cluj-Napoca, Milca Petrovici followed by our observations. 0rder EPHEMEROPTERA Superfamily BAETISCOIDEA Family PROSOPISTOMATIDAE Genus Species Author, year 1. Prosopistoma pennigerum Mueller, 1785 Superfamily BAETOIDEA Family AMETROPODIDAE 2. Ametropus fragilis Albarda, 1878 Family BAETIDAE 3. Acentrella hyaloptera Bogoescu, 1951 4. Acentrella inexpectata Tschenova, 1928 5. Acentrella sinaica Bogoescu, 1931 6. Baetis alpinus Pictet, 1843 7. Baetis buceratus Eaton, 1870 8. Baetis fuscatus Linnaeus, 1761 9. Baetis gracilis Bogoescu and Tabacaru, 1957 10. Baetis lutheri Eaton, 1885 11. Baetis melanonyx Bogoescu, 1933 12. Baetis muticus Bürmeister, 1839 13. Baetis niger Linnaeus, 1761 14. Baetis rhodani Pictet, 1843 15. Baetis scambus Eaton, 1870 16. Baetis tenax Eaton, 1870 17. Baetis tricolor Tschenova,1828 18. Baetis vernus Curtis, 1864 19. Centroptilum luteolum Müller, 1775 20. Cloeon dipterum Linné, 1761 21. -
Laodelphax Striatellus
Laodelphax striatellus Scientific Name Laodelphax striatellus (Fallén, 1826) Synonyms Delphax striata Fallén, 1806 Delphax striatella (Fallén, 1826) Liburnia striatella (Sahlberg, 1842) Delphax notula (Stal, 1854) Liburnia akashiensis (Matsumura, 1900) Liburnia devastans (Matsumura, 1900) Liburnia gifuensis (Matsumura, 1900) Liburnia maikoensis (Matsumura, 1900) Liburnia minonensis (Matsumura, 1900) Liburnia nipponica (Matsumura, 1900) Delphacodes striatella (Fallén, 1917) Liburnia marginata (Haupt, 1935) Figure 1. Laodelphax striatellus adult. Calligypona marginata (Fabricius 1946) James Lindsey at Ecology of Commanster, CC BY-SA 3.0. Common Name(s) Small brown planthopper, Smaller brown planthopper, Brown planthopper Type of Pest Planthopper Taxonomic Position Class: Insecta Order: Hemiptera Family: Delphacidae Reason for Inclusion in Manual 2017 CAPS Pests of Economic and Environmental Concern List Pest Description Eggs: Eggs, which are white in color, are laid in masses of 60-260 in lower portions of the host plant, in the midrib or leaf sheath (Dale, 1994). Nymphs (Fig. 2): There are five nymphal instars, and nymphal color ranges from light to dark brown (Dale, 1994). The fifth instar has extended mesonatal wingpads which are distinct from other delphacids (Wilson and Claridge, 1991). The fifth and final 1 instar has a head with a width of 0.50-0.54 mm (~ /64 in) and distinct dark-brown markings on the post clypeus (Wilson and Claridge, 1991). 1 Last updated: September 26, 2018 Adults (Fig. 1, 2): Adults have macropterous (M, large-winged) and brachypterous (B, small-winged) wing forms, which vary based on environmental and genetic factors (Mori and Nakasuji, 1991). A study in China showed that the M wing form is more common (Wang et al., 2013). -
Ceh Code List for Recording the Macroinvertebrates in Fresh Water in the British Isles
01 OCTOBER 2011 CEH CODE LIST FOR RECORDING THE MACROINVERTEBRATES IN FRESH WATER IN THE BRITISH ISLES CYNTHIA DAVIES AND FRANÇOIS EDWARDS CEH Code List For Recording The Macroinvertebrates In Fresh Water In The British Isles October 2011 Report compiled by Cynthia Davies and François Edwards Centre for Ecology & Hydrology Maclean Building Benson Lane Crowmarsh Gifford, Wallingford Oxfordshire, OX10 8BB United Kingdom Purpose The purpose of this Coded List is to provide a standard set of names and identifying codes for freshwater macroinvertebrates in the British Isles. These codes are used in the CEH databases and by the water industry and academic and commercial organisations. It is intended that, by making the list as widely available as possible, the ease of data exchange throughout the aquatic science community can be improved. The list includes full listings of the aquatic invertebrates living in, or closely associated with, freshwaters in the British Isles. The list includes taxa that have historically been found in Britain but which have become extinct in recent times. Also included are names and codes for ‘artificial’ taxa (aggregates of taxa which are difficult to split) and for composite families used in calculation of certain water quality indices such as BMWP and AWIC scores. Current status The list has evolved from the checklist* produced originally by Peter Maitland (then of the Institute of Terrestrial Ecology) (Maitland, 1977) and subsequently revised by Mike Furse (Centre for Ecology & Hydrology), Ian McDonald (Thames Water Authority) and Bob Abel (Department of the Environment). That list was subject to regular revisions with financial support from the Environment Agency. -
Investigating Resistance to Emamectin Benzoate in the Tomato Borer Tuta Absoluta
Investigating Resistance to Emamectin Benzoate in the Tomato Borer Tuta Absoluta Emmanouil Roditakis ( [email protected] ) Elleniko Mesogeiako Panepistemio https://orcid.org/0000-0002-5938-2977 Marianna Stavrakaki Hellenic Mediterranean University: Elleniko Mesogeiako Panepistemio Aris Ilias Foundation of Research and Technology Hellas: Idryma Technologias kai Ereunas Panagiotis Ioannidis Foundation of Research and Technology Hellas: Idryma Technologias kai Ereunas John Vontas Foundation of Research and Technology Hellas: Idryma Technologias kai Ereunas Research Article Keywords: Tuta absoluta, resistance, avermectins, emamectin benzoate, abamectin; tomato, borer, P450s, Greece Posted Date: August 23rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-816356/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract The tomato borer Tuta absoluta is a major pest of tomato mainly controlled by chemical insecticides. However, development of resistance to specic chemical classes has made control of the pest extremely dicult. Emamectin benzoate belongs to the avermectin mode of action and to date, low or no resistance levels against this insecticide have been documented. Recently, reduced ecacy of emamectin benzoate was documented, in a eld population from Crete (9-fold resistant ratio (RR)). Subsequent laboratory selections with emamectin benzoate for eight sequential generations, resulted in an increase of the RR to 60-fold, the highest resistance level reported to the particular insecticide. Hereby, we are presenting the characterization of emamectin benzoate resistance in T. absoluta. Sequencing of the GluCl and GABA receptor (rdl) genes, the molecular targets of emamectin benzoate, indicted absence of non-synonymous SNPs. The use of known enzyme inhibitors (PBO, DEF and DEM) revealed that P450s partially synergized emamectin benzoate resistance, suggesting potential implication of metabolic resistance. -
ABSTRACTS of the 79Th SCIENTIFIC CONFERENCE of the UNIVERSITY of LATVIA
https://doi.org/10.22364/eeb.19.05 ABSTRACTS OF THE 79th SCIENTIFIC CONFERENCE OF THE UNIVERSITY OF LATVIA January – February 2021 Štrusa D., Poppels A. Investigations of macrozoobenthoss communities in lakes of Smiltene area 35 Orlovskis Z., Reymond P. Insect eggs trigger inter-plant systemic acquired resistance and enhanced insect performance 36 Abersons K., Bajinskis J. Ranking of rivers of the Kurzeme Region, Latvia in accordance to the reproduction potential of river lamprey upstream from the migration barriers 37 Purmale L., Bērziņa I., Ievinsh G. Seeds as explant source for tissue culture inititation of seven rare coastal plant species of the Baltic sea 39 Seņkovs M., Poriķe E., Grīgs O., Dzierkale M.T., Nikolajeva V. Production of Trichoderma asperellum biomass under different submerged cultivation regimes 41 Andersone-Ozola U., Ievinsh G. Armeria maritima from a dry coastal meadow: Na and K tolerance and ion accumulation 43 Andersone-Ozola U., Karlsons A., Osvalde A., Romanovs R., Ievinsh G. Responses of two ecotypes of Mentha aquatica to salinity, heavy metals and mineral nutrient availability 45 Jēkabsone A., Ievinsh G. Calystegia sepium and Calystegia soldanella as model species in ecophysiological studies: propagation potential and opportunities 47 Ievinsh G., Andersone-Ozola U. Strawberry clover (Trifolium fragiferum) in the Baltic Sea region: scientifically alluring clonal legume species and undervalued economic resource 49 Ievinsh G. NaCl tolerance and ion accumulation in Rumex sanguineus plants 51 Romanovs M., Jēkabsone A., Andersone-Ozola U., Veidere A., Ievinsh G. Plantago coronopus and Plantago maritima: comparison of salinity tolerance and ion accumulation of the two coastal species 53 Ņečajeva J., Gundega Putniece G., Sanžarevska R. -
Neue Eintagsfliegen Für Die Fauna Bulgariens (Ephemeroptera)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Entomologie = Contributions to Entomology Jahr/Year: 1960 Band/Volume: 10 Autor(en)/Author(s): Russev Boris Artikel/Article: Neue Eintagsfliegen für die Fauna Bulgariens (Ephemeroptera). 697-705 ©www.senckenberg.de/; download www.contributions-to-entomology.org/ Beiträge zur Entomologie, Band 10, 1960, Nr. 7/8 697 Tillyard , R. J., Revision of the family Eustheniidae (Order Perlaria) with descriptions of new genera and species. Proc. Linn. Soc. New South Wales 46, 221—236,1921. —, New genera and species of Australian stoneflies (Order Perlaria). Trans. Roy. Soc. South Australia, 48, 192—195, 1924. —, Order Perlaria (or Plecoptera). In: The insects of Australia and New Zealand, p. 113—119, 1926. —, Upper Permian Insects of New South Wales. The Order Perlaria or Stoneflies. Proc. Linn. Soc. New South Wales, 60, 385—391, 1935. W estwood , J. O., Cuvier’s The animal Kingdom, etc. (Griffith), 15, 348—374, 1832. Neue Eintagsfliegen für die Fauna Bulgariens (Ephemeroptera) B oris R ttssev Forschungsinstitut für Fischerei Varna Angaben über die Eintagsfliegen Bulgariens sind in den Arbeiten vonS ohoene - mund (1926), B dresch (1936), Caspers (1951) und R ussbv (1957, 1959) enthalten (s. Verzeichnis der bisher festgestellten Eintagsfliegen Bulgariens). Vorliegende Publikation behandelt 4 Gattungen und 17 Arten (16 Larven und 1 Imago) von Eintagsfliegen, die für die Fauna Bulgariens neu sind. Außerdem werden 4 Arten (Imagines) genannt, die aus Bulgarien bisher nur als Larven bekannt waren, und eine Art (Larve), die bisher nur als Imago festgestellt war. Die Artzugehörigkeit einer Larve, die von R ttssev (1957) mit Fragezeichen angegeben war, wird bestimmt. -
Taxonomy, Distribution, Biology and Conservation Status Of
TAXONOMY, DISTRIBUTION, BIOLOGY AND CONSERVATION STATUS OF FINNISH AUCHENORRHYNCHA THE FINNISH ENVIRONMENT 7 | 2007 The publication is a revision of the Finnish froghopper and leafhopper fauna Taxonomy, distribution, biology NATURE (Hemiptera: Auchenorrhyncha) using modern systematics and nomenclature and combining a vast amount of recent findings with older ones. The biology and conservation status of of each species is shortly discussed and a link is given to the regularly updated species distribution atlas on the web showing detailed distribution and phenol- Finnish Auchenorrhyncha ogy of each species. An intermittent assessment of the conservation status of all (Hemiptera: Fulgoromorpha et Cicadomorpha) species is made and the threat factors are shortly discussed. Guy Söderman THE FINNISH ENVIRONMENT 7 | 2007 ISBN 978-952-11-2594-2 (PDF) ISSN 1796-1637 (verkkoj.) Finnish Environment Institute THE FINNISH ENVIRONMENT 7 | 2007 Taxonomy, distribution, biology and conservation status of Finnish Auchenorrhyncha (Hemiptera: Fulgoromorpha et Cicadomorpha) Guy Söderman Helsinki 2007 FINNISH ENVIRONMENT INSTITUTE THE FINNISH ENVIRONMENT 7 | 2007 Finnish Environment Institute Expert Services Department Page layout: Pirjo Lehtovaara Front cover: Freshly hatched Mountain Cicada (Cicadetta montana, photo: Jaakko Lahti) The publication is only available in the internet: www.environment.fi/publications ISBN 978-952-11-2594-2 (PDF) ISSN 1796-1637 (verkkoj.) PREFACE The latest assessment of the Finnish species in year 2000 revealed a strong defiency in the knowledge of planthoppers and leafhoppers. About one third of all species could not be properly assessed and were classified as data deficient. A year later a national Expert Group on Hemiptera was formed to increase the basic knowledge of this insect order. -
Checklist of Mayflies (Ephemeroptera, Insecta) from Iraq
M.CHECKLIST S. Abdul-Rassoul Iraq Nat. Hist. Mus. Publ. (May, 2020) no. 37, 16 pp. Checklist of Mayflies (Ephemeroptera, Insecta) from Iraq M. S. Abdul-Rassoul Iraq Natural History Research Center and Museum (Emeritus professor), University of Baghdad, Baghdad, Iraq. Corresponding author: [email protected] Received Date: 05January 2020, Accepted Date: 11 May 2020, Published Date: 31 May 2020 Abstract This work provides the updated checklist of the mayfly (Ephemeroptera) fauna of Iraq; it consists of 30 species belonging to 18 genera and 10 families. The highest number of species belongs to the families of Baetidae and Heptageniidae, whereas the lowest in Ephemeridae, Leptophlebiidae and Palingeniidae that appeared with only one species for each of them. The current investigation is a contribution to the knowledge regarding the biodiversity of mayflies, with mentioning the synonyms of the species and correcting the scientific names that found in previous publications in Iraq. Keywords: Ephemeroptera, Insecta, Iraq, Mayflies, Museum. Introduction Ephemeroptera with two pairs of wings; the fore much wider than the hind wings, which in some genera are reduced in size or even wholly absent; venation system is of considerable importance in classification; further small veins locate between the main veins are termed intercalary veins. Mouth parts entirely vestigial; compound eyes of male larger than at female, divided in some species, and the 1 Checklist of Mayflies upper part prominent as turret shaped; forelegs in males often extremely long; abdominal terminates with two or three long and many jointed filaments, the median one in certain genera being reduced; the male carries a pair of jointed claspers arising from a plate on the 9thsternite (Kimmins, 1950). -
The Α-Tubulin of Laodelphax Striatellus Facilitates the Passage Of
bioRxiv preprint doi: https://doi.org/10.1101/502831; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The α-tubulin of Laodelphax striatellus facilitates the passage of 2 rice stripe virus (RSV) and enhances horizontal transmission 3 Yao Li1,2, Danyu Chen1, Jia Hu1, Lu Zhang1, Yin Xiang1, Fang 4 Liu1,3,4* 5 1 College of Horticulture and Plant Protection, Yangzhou University, 6 Yangzhou, China, 2 State Key Laboratory for Biology of Plant Diseases 7 and Insect Pests, Institute of Plant Protection, Chinese Academy of 8 Agricultural Sciences, Beijing, China, 3 Joint International Research 9 Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 10 Yangzhou, China, 4 Jiangsu Co-Innovation Center for Modern 11 Production Technology of Grain Crops, Yangzhou University, 12 Yangzhou, China. 13 Abstract 14 Rice stripe virus (RSV), causal agent of rice stripe disease, is transmitted by the small 15 brown planthopper (SBPH, Laodelphax striatellus) in a persistent manner. The midgut and 16 salivary glands of SBPH are the first and last barriers in viral circulation and transmission, 17 respectively; however, the precise mechanisms used by RSV to cross these organs and 18 re-inoculate rice have not been fully elucidated. We obtained full-length cDNA of L. 19 striatellus α-tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB bioRxiv preprint doi: https://doi.org/10.1101/502831; this version posted December 20, 2018.