MULTIVANTAGE® Syrup MULTIVANTAGE ® SYRUP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BREWERS' CRYSTALS® High Maltose Corn Syrup Solids
BREWERS’ CRYSTALS® High Maltose Corn Syrup Solids Advantages • Good match for all malt wort • Gluten free • Consistent purity and quality while adding flexibility and capacity Ingredion understands that brewery is an art as well as a science; our brewing adjunct portfolio is based on more What is it? than 100 years of service to the industry with a variety of ingredients. We take pride in our quality and ISO 9001 and BREWERS’ CRYSTALS High Maltose Corn Syrup Solids are FSSC 22000 systems certifications and our reliability one fermentable carbohydrates from corn, specially produced of the strongest supply chains in the industry. to obtain a profile close to an all-barley malt wort (Figure 1). Easy to use in powder form, they can be added directly to the brew kettle to create beers with crisper lighter flavor, or later How do I use it? in the process to add more complex character in priming. Ingredion BREWERS’ CRYSTALS HM Corn Syrup Solids can be easily added as an adjunct directly to the brewing kettle BREWERS’ CRYSTALS HM Corn Syrup Solids provide 100% or before filtration steps to add crisp and light character- total extract and 80% fermentable extract allowing the istics to lagers, ales and special beer recipes, or in priming Brew Master the flexibility of including them in a broad for added notes to complex beers. range of formulation and thus a wider spectrum of beers. Why should I use it? FIGURE 1: CARBOHYDRATE PROFILES COMPARISON 60 The benefits of BREWERS’ CRYSTALS HM Corn Syrup Solids: 56 • Packaged in convenient 25 kg (55 lb) multiwall poly-lined 52 BREWERS’ 50 CRYSTALS bags, they are easy to handle and store without the need for Wort* additional liquid handling systems. -
Sugar: the Many Names Used in Processed Foods
Sugar: the Many Names Used in Processed Foods Both glucose and fructose are common, but they affect the body very differently. Glucose can be metabolized by nearly every cell in the body. Fructose is metabolized almost entirely in the liver. Fructose has harmful effects on the body, including insulin resistance, metabolic syndrome, fatty liver, and type 2 diabetes. It is especially important to minimize the intake of high fructose sugars. Many processed foods will have a combination of sugars. Because the ingredient are listed in order of quantities, using several different sugar names presents the illusion that sugars are less prominent in the ratio of ingredients. Sugar / Sucrose Agave Nectar Sugar with Glucose & Fructose Also knows as table, granulated, or Produced from the agave plant in Various Amounts white sugar, occurring naturally in 79-90% fructose, 10-30% glucose Beet Sugar fruits and plants, added to many Blackstrap Molasses processed foods. Sugar with Fructose Only Brown Sugar, Dark or Light Brown 50% glucose, 50% fructose Crystalline Sugar Fructose Buttered Syrup High Fructose Corn Syrup, HFCS Cane Juice Crystals Sugar without Glucose or HFCS 55 – the most common type Fructose Cane Syrup of HRCS. 55% fructose, 45% D-Ribose, Ribose Cane Sugar glucose, composition is similar to Galactose Caramel sucrose Caramel Color HFCS90 – 90% fructose, 10% Names for Hidden Sugars Carob Syrup glucose Aguamiel Castor Sugar All-natural sweetener Coconut Sugar Names Used to Denote Hight Barbados Molasses Confectioner’s Sugar (Powdered Fructose -
Review Article Effect of Substitution of Sugar by High Fructose Corn Syrup
Nutrition and Food Sciences Research Vol 3, No 4, Oct-Dec 2016, pages: 3-11 Review Article Effect of Substitution of Sugar by High Fructose Corn Syrup on the Physicochemical Properties of Bakery and Dairy Products: A Review Azizollaah Zargaraan1, Leila Kamaliroosta2, Amin Seyed Yaghoubi2, Leila Mirmoghtadaie1* 1- National Nutrition & Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran 2- Zar Knowledge-based Center of Research and Industrial Group, Tehran, Iran Received: August 2016 Accepted: October 2016 A B S T R A C T High fructose corn syrup (HFCS) is commonly found in soft drinks and juice beverages, as well as in many pre-packaged foods such as breakfast cereals, baked goods and dairy desserts. Historically, sucrose (table sugar) was primarily added to processed foods and beverages as the sweetening agent. In recent years, the use of HFCS has significantly increased in popularity due to its sweetness, ability to enhance flavor and shelf life, and its low cost. HFCF made by enzymatic isomerization of glucose to fructose was introduced as HFCS-42 (42% fructose) and HFCS-55 (55% fructose) and opened a new frontier for the sweetener and soft drink industries. Using a glucose isomerase, the starch in corn can be efficiently converted into glucose and then to various amounts of fructose. Hydrolysis of sucrose produces a 50:50 molar mixture of fructose and glucose. The primary difference is that these monosaccharides exist free in solution in HFCS, but in sucrose bonded together. The disaccharide sucrose is easily cleaved in the small intestine, so free fructose and glucose are absorbed from both sucrose and HFCS. -
Effect of Agronomic and Storage Practices on Raffinose, Reducing Sugar, and Amino Acid Content of Sugarbeet Varieties1
Effect of Agronomic and Storage Practices on Raffinose, Reducing Sugar, and Amino Acid Content of Sugarbeet Varieties1 R. E. WYSE AND S. T. DEXTER2 Received fo,- /Jub lication July IO. 1970 Introduction The decrease in bagged sucrose per ton of beets during stor age results primarily from two factors. Sucrose is respired, evolv ing CO2 , The transformation of sucrose and other beet con stituents into raffinose, reducing sugars, amino acids, etc., re sults in an accumulation of non-sucrose solutes in the thin juice and corresponding increased sucrose losses into the molasses. Reducing sugars, raffinose and amino acids account for a major portion of the fluctuation in impurities during storage (Wyse et al.) 1970). The purpose of this study was to determine the in fluence of harvest date, nitrogen fertilization and storage tem perature on the content of these three impurities in several sugarbeet varieties. Reducing Sugars The predominant reducing sugars in the beet are glucose and fructose. Free galactose and arabinose are found only in trace amounts (Silin, 1964). Reducing sugars are presumably destroy ed during lime defecation and occur in very small amounts in beet molasses (McGinnis, 1951; Silin, 1964). In this process the reducing sugars are degTaded to acids (lactic, formic, acetic, sac charinic) (Carruthers et al.) 1959) which must be neutralized by the addition of sodium carbonate before evaporation to re duce soluble lime salts and to prevent sucrose inversiop (Silin, 1964; McGinnis, 1951). As a result of the addition of sodium carbonate, molasses quantity and purity are increased resulting in increased sucrose losses (Si Jin, 1%4). -
Lecture 2 Assistant Lecture Tafaoul Jaber
Lecture 2 Assistant Lecture Tafaoul Jaber Effect of alkali on carbohydrates Benidict , Fehling , Barfoed tests . These tests are based on the most important chemical property of sugar, the reducing property. Benidict and fehling tests are used to determine presence of reducing sugar while Barfoed test is used more specifically to distinguish monosaccharides and disaccharides. Reducing and Non- reducing sugars Sugars exist in solution as an equilibrium mixture of open- chain and closed-ring (or cyclic) structures. Sugars that can be oxidized by mild oxidizing agents are called reducing sugars because the oxidizing agent is reduced in the reaction. A non-reducing sugar is not oxidized by mild oxidizing agents. All common monosaccharides are reducing sugars. The disaccharides maltose and lactose are reducing sugars. The disaccharide sucrose is a non-reducing sugar. Common oxidizing agents used to test for the presence of a reducing sugar are: Benedict's solution, Fehling's solution. Benedict's Test Benedict's test determines whether a monosaccharide or disaccharide is a reducing sugar. To give a positive test, the carbohydrate must contain a hemiacetal which will hydrolyse in aqueous solution to the aldehyde form. Benedict's reagent is an alkaline solution containing cupric ions, which oxidize the aldehyde to a carboxylic acid. In turn, the cupric ions are reduced to cuprous oxide, which forms a red precipitate. This solution has been used in clinical laboratories for testing urine. RCHO + 2Cu2+ + 4OH- ----- > RCOOH + Cu2O + 2H2O Hemiacetal & hemiketal formation Procedure Place 1 ml of carbohydrates solutions in test tube. To each tube, add 1 ml of Benedict's reagent. -
MINIMIZATION of SUCROSE LOSSES in SUGAR INDUSTRY by Ph and TEMPERATURE OPTIMIZATION
The Malaysian Journal of Analytical Sciences, Vol 12, No 3 (2008): 513 - 519 MINIMIZATION OF SUCROSE LOSSES IN SUGAR INDUSTRY BY pH AND TEMPERATURE OPTIMIZATION Kornvalai Panpae 1*, Wasna Jaturonrusmee 1, Withawat Mingvanish 1 , Chantana Nuntiwattanawong 2, Surapon Chunwiset 2 , Kittisak Santudrob 1 and Siriphan Triphanpitak 1 1Department of Chemistry , Faculty of Science , King’s Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand 2Chaimongkol Refined Sugar Company, Limited.( U-Thong Factory ), Supanburi Province 72160, Thailand * Corresponding author: [email protected] Abstract Invert sugar has several disadvantage properties that play an important role in many food applications. It has a high affinity for water and is the cause of making products retain moisture.Invert sugar also affects the caramelization process , producing a browning effect. In this study, the possibility of minimization of sucrose inversion during the industrial production of sugar cane was investigated by the variation of the important parameters, i.e. temperature and pH of sugar cane juice for each of samples. The amounts of sucrose and reducing sugar alerting during the sucrose inversion process were determined by the values of % Pol and % reducing sugar (% RS), respectively. Starting with the study of temperature and pH effects of the sucrose solution with the concentration of 16 Brix, used as a sample model, it was found that no change in amounts of reducing sugar and sucrose was observed at room temperature (34 oC) in the pH range of 5-11. At pH 3, the amounts of reducing sugar increased and the amount of sucrose decreased as the time increased. -
Food Science and Technology Notes Extension Division Deportment of Food Scienceondtechnology Virginia Polytechnic Institute Blacksburg, Virginia
Food Science and Technology Notes Extension Division Deportment of Food ScienceondTechnology Virginia Polytechnic Institute Blacksburg, Virginia HFST-547-1 SOME NEWER IDEAS FOR USING CORN SWEETENERS IN ICE CREAM Dr. J. G. Leeder Department of Food Science Rutgers - The State University New Brunswick, New Jersey (Reproduced from NICFA Production Tirs, March 1970) Although the subject of corn sweeteners has been discussed in these Production Tips on several occasions, there still seems to be some misunderstanding about t he various corn sweetener products, their composition differences, and how they should be used in ice cream. This situation has caused confusion among ice cream manufac turers. I shall try to clear up the corn sweetener "problem" by re-defining the several products available and indicate how they should be used. In the first place, corn sweeteners should not be called "corn sugar. 11 Corn sugar, or dextrose, is a monosaccharide sugar obtained from the complete hydrolysis of corn starch. This sugar, which is about 75% as sweet as sucrose, has an approxi mate analysis of dextrose - 92% and water (as water of crystallization) - 8%. Since a 15% dextrose solution has a freezing point of 28.63°F compared with 30.16°F for a 15% sucrose solution, only 25% replacement of sucrose with dextrose is advisable. More than this amount of dextrose will cause difficulties with freezing , hardening, and storing of the ice cream because its freezing point will be too low. Dextrose (corn sugar) is not used much today in ice cream because it has no body building or heat shock resistance properties and because it lowers the freezing point too much. -
Invert Sugar Determination by Polarimeter
Invert Sugar Determination by Polarimeter Invert sugar (IS) contains fructose and glucose in roughly equal proportions. The Invert sugar is greater in demand than pure glucose as food and drink sweeteners, because fructose is sweeter than glu- cose. Main consumers of Invert Sugar are the baking, beverages, canning, confectionery and dairy industries. In addition, high fructose syrup is used in many other processed foods like jams and jellies. However, it is being used only in biscuits and soft drinks. A manufacturer of IS expecting to supply it in next couple of years to the confectionery, fruit canning, processed foods and dairy products industries also. Fructose, also known as fruit sugar, is the sweetest natural sugar and is found in fruits, vegeta- bles, and honey. The body responds to fructose in a different way than to glucose and sucrose. Fructose is more satiating, and it is up to 1.8 times sweeter than sucrose, making it useful in foods and bever- ages for the health conscious. Fructose is also ideal for use in diabetic foods as it has very little effect on blood glucose and only a negligible effect on the secretion of insulin. Enzymatic treat- ments are a now a major way of producing sweeteners, including syrups derived from sucrose derived from sucrose or starch th at contain mixtures of glucose, maltose, fructose, and other sugars. Glucose has 70-75% the sweetening strength of beet sugar (sucrose), but fructose is twice as sweet as sucrose. Thus, processes for the manufacture of fructose are of considerable value. Invertase enzyme is used traditionally in the production of inverted sugars for industry, espe- cially in the manufacture of candies and preserves, production of lactic acid and ethanol pro- duction from fermentation of cane sugar molasses. -
Nutritive Sweeteners from Corn Have Become America’S Premier Sweeteners
NutritiveNutritive SweetenersSweeteners FromFrom CornCorn CONTENTS Member Companies and Plant Locations ....................................... 2 Foreword .......................................................................................... 3 Historical Perspective ...................................................................... 4 Research and development orientation ....................................... 5 Technology aimed at needs .......................................................... 7 Growth, Development and Diversity ............................................. 7 CONTENTS Classification and Nutrition ............................................................ 9 Classification ................................................................................. 9 Corn sweeteners in nutrition ..................................................... 10 Technical Background ................................................................... 11 Corn starch ................................................................................. 11 Starch hydrolysis ........................................................................ 13 Crystalline dextrose .................................................................... 14 Dextrose isomerization .............................................................. 15 Manufacture ................................................................................... 17 Corn syrups ................................................................................ 17 Dried corn syrups ...................................................................... -
Difference Between Reducing Sugar and Starch Key Difference - Reducing Sugar Vs Starch
Difference Between Reducing Sugar and Starch www.differencebetween.com Key Difference - Reducing Sugar vs Starch Redox is a chemical reaction which changes the oxidation number of a molecule, atom or ion. Oxidation and Reduction are the main two events occur during the Redox reaction. Loss of electrons or increase in oxidation state is known as oxidation while the gain of electrons or decrease in oxidation state is known as reduction. Reducing agent is a molecule which can donate an electron to another molecule and become decreased in oxidation state. Some sugars can act as reducing agents. They are known as reducing sugars. Reducing sugars have the aldehyde group to become oxidized and convert into the carboxylic acid group. Starch is a polymer made of amylose and amylopectin. It is the major carbohydrate reserve in plants. Starch does not possess a free hydrogen molecule which is attached to oxygen. Hence, starch is unable to be formed the open aldehyde and as a result unable to be oxidized and reduced other sugars. The key difference between Reducing sugar and Starch is that starch is not a reducing sugar due to the absence of hydrogen on the circled oxygen to allow for ring opening. What is Reducing Sugar? Sweet soluble carbohydrates are known as sugars. There are various types of sugars. They can be monosaccharides (simple sugars), disaccharides or polysaccharides. Monosaccharides include glucose, fructose, galactose etc. Disaccharides include sucrose, lactose etc. Polysaccharides include starch, cellulose, pectin etc. Most of the monosaccharides are having an aldehyde group or a ketone group. Hence, they can be oxidized and act as a reducing agent for another molecule. -
Pedi Sugar Facts
Facts About Sugar THE SUGAR BASICS READING A FOOD LABEL Sugar gives the body energy, but too much sugar is unhealthy. The body actually uses all sugars the same way- it changes them to glucose, which is what our body uses for energy. However, in order to get long-lasting energy for your body, you need to eat more complex sugars (or carbohydrates) such as whole grain products. Eating too many simple sugars, like from soda or sweets, gives you quick energy or a “sugar high” which is quickly gone, leaving you feeling sluggish. You can avoid eating too much sugar by being smart and knowing how to find it on a label. Find sugar by looking for –ose at the end. Examples: Glucose- fruits, vegetables, honey, milk, cereal Fructose- fruits, vegetables, honey Galactose- milk products Sucrose- fruits, vegetables, table sugar Find the “Total Carbohydrate”, Lactose- milk products and below it find “Sugars”. Sugar Maltose- malt products, cereal is listed in grams. Every 4 grams of sugar = 1 teaspoon of table sugar. Know the many different names for sugar, such as: corn syrup, high-fructose corn syrup, In this example, 8 oz. of lemonade dextrose, maltodextrins, granulated sugar, or concentrated fruit juice sweetener. Added (240 mL) has 27 grams of sugar. sugars can come from corn, beet, grape or This equals about 7 teaspoons, sugar cane, which are processed before being and the daily limit is 10 added to foods. Sugars can also be naturally teaspoons! occurring (in fruit) or added (in soda). May be reproduced for educational purposes ©2007 Developed by graduate nutrition students at Framingham State College Facts About Sugar HIGH FRUCTOSE CORN SYRUP DID YOU KNOW??? High Fructose Corn Syrup (HFCS) is an One 12-oz. -
Chewy Confections
[Confections] Vol. 14 No. 9 September 2004 ww Chewy Confections By Peter Dea, Contributing Editor Gumdrops and lemon drops -- although both are candies, a gumdrop eats differently than a lemon drop. While you may chew on the former, you probably wouldn't the latter. Part of picking candy is based on how interactive you want it to be. That is -- at least for this discussion -- do you want to chew it? When it comes to satisfying our need for a bite-sized sweet treat that also fulfills our desire to chew, it's chewy confections that meet these requirements. Excluding chewing gums, the most common chewy confections include jellies, caramels and nougats, and taffies. Within these groups lie a wide variety of shapes, flavors, textures and sizes. In addition to their broad appeal as traditional confections, chewy treats also find popularity in additional segments as a delivery means for vitamins, minerals and other nutraceutical ingredients. And with the current trend of low-carb lifestyles, sugar-free chewy confections are enjoying new interest. The technology for producing these sweet treats has existed for a long time. But, to implement the knowledge for new applications, it's beneficial to have a good understanding of the basic formulae and processes for each type. Back to basics According to Henry Nonaka, senior technical sales support manager, Corn Products International, Bedford Park, IL: "Combinations of three sweeteners -- sucrose, 42 DE, and 63 DE corn syrups -- are the basis for about every cooked confectionery product. To a lesser extent, high-maltose and high-fructose corn syrups (HFCS) can be used." In combination with moisture content, confectioners vary the amounts of these ingredients to begin creating candies with different textures and eating characteristics.