The Pennsylvania State University the Graduate School Department

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School Department The Pennsylvania State University The Graduate School Department of Plant Pathology REUSE OF SPENT MUSHROOM COMPOST FOR PRODUCTION OF AGARICUS BISPORUS A Thesis in Plant Pathology by Emmie L. Warnstrom © 2013 Emmie L. Warnstrom Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2013 ii The thesis of Emmie L. Warnstrom was reviewed and approved* by the following: Donald D. Davis Professor of Plant Pathology and Environmental Microbiology Thesis Co-Adviser Daniel J. Royse Professor Emeritus of Plant Pathology Thesis Co-Adviser John A. Pecchia Associate Professor of Plant Pathology and Environmental Microbiology Timothy W. McNellis Professor of Plant Pathology and Environmental Microbiology Michael A. Fidanza Professor of Plant and Soil Sciences Fredrick E. Gildow Head of the Department of Plant Pathology and Environmental Microbiology *Signatures are on file in the Graduate School iii ABSTRACT Annual (2011-2012) revenue from production of Agaricus bisporus in the United States has risen to 1.1 billion dollars. In southeastern PA, more than 2.7 M m3 of spent mushroom compost, the nitrogen-rich byproduct of a mushroom crop, is produced annually. Disposal of SMC off the farm is relatively eXpensive and growers often seek beneficial uses of SMC to help offset the cost of disposal. The objective of this study was to investigate the reuse of SMC as an ingredient in the preparation of fresh mushroom compost. Three mushroom crops (Crops 1,2,3) were grown from compost made with and without SMC as an ingredient at the Mushroom Research Center of The Pennsylvania State University. Three compost types were prepared for each crop as follows: 1) 100% control formula (no SMC, Ctl), 2) 20% SMC + 80% control formula (80Ctl), and 3) 20% SMC + 80% lignocellulose formula (80LC). Compost types 1 and 2 were based on straw-bedded horse manure while the third formula was prepared with comparatively higher lignocellulose-rich materials including corn stover, corn cobs, cottonseed hulls and wheat straw (80LC). At spawning, the three composts were supplemented with various nutrients, including corn gluten feed, Grit-O’Cobs® 80, corn bran, and Lambert Full House® T6 (a commercial nutrient), to determine their single or interactive effect with compost type on mushroom yield and biological efficiency (BE). Bulk densities of the three composts were also iv measured at spawning to determine if SMC addition to formulations significantly affected the mass to volume ratio of the compost types. Compost type was a significant factor for BE of mushroom production in two out of three crops (Crops 1,2). In Crop 1, BE was equivalent for Ctl and 80LC, while the BE of the 80Ctl was significantly lower. In Crop 2, BE was significantly higher for the 80LC compost compared to the Ctl and 80Ctl. These results suggest that at least 20% SMC, depending on the formulation, may be incorporated as a bulk ingredient in the preparation of compost without adversely affecting mushroom yields. This could be an advantage to commercial growers who are eXperiencing increasing costs for compost raw materials and SMC disposal. Since SMC is relatively high in nitrogen (N), organic content and minerals, reclaiming nutrients left over in SMC for compost preparation might be an economical prospect for growers. Type of nutrient supplement added at spawning was a significant factor for all three Crops. When used at the same rate (approXimately 3.7% of compost dry wt), none of the supplements stimulated yield more than the commercial supplement T6. However, supplementation of compost at spawning with Grit-O’Cobs® 80, consistently resulted in lower yields and BEs compared to T6. SMC addition to phase I compost significantly increased bulk density of phase II compost. Mean bulk density (kg/m3) increased by 19.2% (from 110.8 to 132.1 kg/m3) in the 80Ctl compared to the Ctl compost. There was no significant difference v between the 80LC and 80Ctl formula in relation to bulk density, suggesting no significant major structural differences between the 80Ctl and 80LC formulations. Analysis of bacterial populations of two-phase II composts (Ctl, 80LC) revealed greater variability among crops than among compost types. Of the 15 known bacterial phyla detected in Ctl and 80LC formulas, 72% of amplifiable DNA from Ctl compost (Crop 1- 73.5%; Crop 2- 72.5%; Crop 3- 70.1%) and 69.6% of amplifiable DNA from 80LC compost (Crop 1- 76.3%; Crop 2- 66.8%; Crop 3- 65.6%) were from four phyla: Firmicutes, Actinobacteria, Proteobacteria, and ChlorofleXi. The Gemmatimonadetes was the only phylum of bacteria statistically different according to metagenomic analysis of the two compost types, comprising only 0.03% of the bacterial populations in the Ctl treatment and 0.002% of populations in the 80LC treatment. Bacterial populations of the genus Truepera showed the largest differences in amplifiable DNA eXtracted from the composts, but still accounted for only 2% of the total population in the Ctl compost. This suggests the post- pasteurization microbial communities may not be different in compost containing SMC vs the control. If this is the case, then selection of raw materials to complement SMC would be more important than particular profiles of microbial populations in the compost. More research is needed in this area, and our work with quantification of bacterial populations may be a useful beginning. vi TABLE OF CONTENTS List of Figures ............................................................................................................. vii List of Tables ............................................................................................................... X Acknowledgements ................................................................................................... xi 1. Introduction ............................................................................................................ 1 2. Methods .................................................................................................................. 5 2.1 Spent Mushroom Compost .................................................................... 5 2.2 Crops and Compost Formulation ........................................................... 5 2.3 Prewet ..................................................................................................... 6 2.4 Phase I Compost ..................................................................................... 7 2.5 Phase II Compost .................................................................................... 7 2.6 Spawning ................................................................................................ 8 2.7 Harvesting ............................................................................................... 9 2.8 Compost Sampling for Fiber, Ash, and Protein Analyses ..................... 10 2.9 Bulk Density Analysis .............................................................................. 11 2.10 DNA EXtraction - Compost Sampling ................................................... 12 2.11 DNA EXtraction - Extraction Methods .................................................. 13 3. Results ..................................................................................................................... 16 3.1 Phase I Temperatures ............................................................................. 16 3.2 Yield and Biological Efficiency (BE) ........................................................ 18 3.3 Simple Correlation Coefficients ............................................................. 26 3.4 Bulk Density ............................................................................................ 27 3.5 Metagenomic Analysis ........................................................................... 28 4. Discussion ............................................................................................................... 31 References ........................................................................................................... 36 AppendiX A Significant Correlations (complete) .............................................. 41 AppendiX B Metagenomic Data (raw) ............................................................... 44 vii LIST OF FIGURES Figure 2-1. Straight-sided 18.9 L bucket used for bulk density test of phase II compost. Bucket was filled 1/3 of the volume at a time, dropped 10 times from 30 cm off the ground onto a rubber mat, and topped off before weighing (U.S. Composting Council, 2001). ............................................................................... 12 Figure 3-1. Phase I temperatures (recorded at 10 min intervals) of Ctl (control), 80Ctl (20% SMC amended control), and 80LC (20% SMC amended lignocellulose) compost types contained in bunkers (Crop 1; MRC 1214). ............... 17 Figure 3-2. Phase I temperatures (recorded at 10 min intervals) of Ctl (control), 80Ctl (20% SMC amended control), and 80LC (20% SMC amended lignocellulose) compost types contained in bunkers (Crop 2; MRC 1215). .............. 17 Figure 3-3. Phase I temperatures of Ctl (control), 80Ctl (20% SMC amended control), and 80LC (20% SMC amended lignocellulose) compost types contained in bunkers (Crop 3; MRC 1302). ................................................................ 18 Figure 3-4. Groupings from analysis of variance for compost type for mushroom yield and biological efficiency (BE). Ctl= Control, 80C= 20% SMC + 80% Control, 80LC= 20% SMC + 80% Lignocellulose
Recommended publications
  • Quantitative and Qualitative Evaluation of the Impact of the G2 Enhancer
    bioRxiv preprint doi: https://doi.org/10.1101/365395; this version posted July 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Quantitative and qualitative evaluation of the impact of the G2 2 enhancer, bead sizes and lysing tubes on the bacterial community 3 composition during DNA extraction from recalcitrant soil core 4 samples based on community sequencing and qPCR 5 6 Alex Gobbi1¶, Rui G. Santini2¶, Elisa Filippi1, Lea Ellegaard-Jensen1, Carsten S. 7 Jacobsen1, Lars H. Hansen1* 8 9 1 Department of Environmental Science, Aarhus University, Roskilde, Denmark 10 2 Natural History Museum, Centre for GeoGenetics, University of Copenhagen, Copenhagen, 11 Denmark 12 13 14 * Corresponding author 15 E-mail: [email protected] (LHH) 16 17 18 ¶ These authors contributed equally to this work. 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/365395; this version posted July 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 Soil DNA extraction encounters numerous challenges that can affect both yield and 23 purity of the recovered DNA. Clay particles lead to reduced DNA extraction efficiency, 24 and PCR inhibitors from the soil matrix can negatively affect downstream analyses 25 when applying DNA sequencing.
    [Show full text]
  • Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship Between Total Bacterial Diversity and Actinobacteria Diversity
    Mar. Drugs 2014, 12, 899-925; doi:10.3390/md12020899 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity Katherine Duncan 1, Bradley Haltli 2, Krista A. Gill 2 and Russell G. Kerr 1,2,* 1 Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mail: [email protected] 2 Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mails: [email protected] (B.H.); [email protected] (K.A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-902-566-0565; Fax: +1-902-566-7445. Received: 13 November 2013; in revised form: 7 January 2014 / Accepted: 21 January 2014 / Published: 13 February 2014 Abstract: Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x̄ = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7).
    [Show full text]
  • Table S1. Bacterial Otus from 16S Rrna
    Table S1. Bacterial OTUs from 16S rRNA sequencing analysis including only taxa which were identified to genus level (those OTUs identified as Ambiguous taxa, uncultured bacteria or without genus-level identifications were omitted). OTUs with only a single representative across all samples were also omitted. Taxa are listed from most to least abundant. Pitcher Plant Sample Class Order Family Genus CB1p1 CB1p2 CB1p3 CB1p4 CB5p234 Sp3p2 Sp3p4 Sp3p5 Sp5p23 Sp9p234 sum Gammaproteobacteria Legionellales Coxiellaceae Rickettsiella 1 2 0 1 2 3 60194 497 1038 2 61740 Alphaproteobacteria Rhodospirillales Rhodospirillaceae Azospirillum 686 527 10513 485 11 3 2 7 16494 8201 36929 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 455 302 873 103 16 19242 279 55 760 1077 23162 Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella 9060 5734 2660 40 1357 280 117 29 129 35 19441 Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 3336 1991 3475 1309 2819 233 1335 1666 3046 218 19428 Betaproteobacteria Burkholderiales Burkholderiaceae Paraburkholderia 0 1 0 1 16051 98 41 140 23 17 16372 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Mucilaginibacter 77 39 3123 20 2006 324 982 5764 408 21 12764 Gammaproteobacteria Pseudomonadales Moraxellaceae Alkanindiges 9 10 14 7 9632 6 79 518 1183 65 11523 Betaproteobacteria Neisseriales Neisseriaceae Aquitalea 0 0 0 0 1 1577 5715 1471 2141 177 11082 Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 324 219 8432 533 24 123 7 15 111 324 10112 Alphaproteobacteria
    [Show full text]
  • The Subway Microbiome: Seasonal Dynamics and Direct Comparison Of
    Gohli et al. Microbiome (2019) 7:160 https://doi.org/10.1186/s40168-019-0772-9 RESEARCH Open Access The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities Jostein Gohli1* , Kari Oline Bøifot1,2, Line Victoria Moen1, Paulina Pastuszek3, Gunnar Skogan1, Klas I. Udekwu4 and Marius Dybwad1,2 Abstract Background: Mass transit environments, such as subways, are uniquely important for transmission of microbes among humans and built environments, and for their ability to spread pathogens and impact large numbers of people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables that affect microbial composition and those microorganisms that are unique to specific habitats. Methods: We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface were identified using random forest classification analyses, followed by in-depth diversity analyses. Results: There were significant differences between the air and surface bacterial communities, and across seasons. Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was higher during spring and summer.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Liquor Production of Chinese Strong-Flavored Different-Aged
    Prokaryotic Communities in Pit Mud from Different-Aged Cellars Used for the Production of Chinese Strong-Flavored Liquor Yong Tao, Jiabao Li, Junpeng Rui, Zhancheng Xu, Yan Zhou, Xiaohong Hu, Xiang Wang, Menghua Liu, Daping Li and Xiangzhen Li Appl. Environ. Microbiol. 2014, 80(7):2254. DOI: 10.1128/AEM.04070-13. Published Ahead of Print 31 January 2014. Downloaded from Updated information and services can be found at: http://aem.asm.org/content/80/7/2254 These include: http://aem.asm.org/ SUPPLEMENTAL MATERIAL Supplemental material REFERENCES This article cites 38 articles, 12 of which can be accessed free at: http://aem.asm.org/content/80/7/2254#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on March 11, 2014 by guest Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Prokaryotic Communities in Pit Mud from Different-Aged Cellars Used for the Production of Chinese Strong-Flavored Liquor Yong Tao,a Jiabao Li,a Junpeng Rui,a Zhancheng Xu,b Yan Zhou,c Xiaohong Hu,c Xiang Wang,a Menghua Liu,b Daping Li,a Xiangzhen Lia Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, People’s Republic of Chinaa; Sichuan Jiannanchun Group Co. Ltd., Sichuan, People’s Republic of Chinab; College of Life Science, Sichuan University, Sichuan, People’s Republic of Chinac Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Dissertation Implementing Organic Amendments To
    DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO.
    [Show full text]
  • Diversity and Taxonomic Novelty of Actinobacteria Isolated from The
    Diversity and taxonomic novelty of Actinobacteria isolated from the Atacama Desert and their potential to produce antibiotics Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel Vorgelegt von Alvaro S. Villalobos Kiel 2018 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: Prof. Dr. Ute Hentschel Humeida Tag der mündlichen Prüfung: Zum Druck genehmigt: 03.12.2018 gez. Prof. Dr. Frank Kempken, Dekan Table of contents Summary .......................................................................................................................................... 1 Zusammenfassung ............................................................................................................................ 2 Introduction ...................................................................................................................................... 3 Geological and climatic background of Atacama Desert ............................................................. 3 Microbiology of Atacama Desert ................................................................................................. 5 Natural products from Atacama Desert ........................................................................................ 9 References .................................................................................................................................. 12 Aim of the thesis ...........................................................................................................................
    [Show full text]
  • Microbiology in Shale: Alternatives for Enhanced Gas Recovery
    Graduate Theses, Dissertations, and Problem Reports 2015 Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Tucker, Yael Tarlovsky, "Microbiology in Shale: Alternatives for Enhanced Gas Recovery" (2015). Graduate Theses, Dissertations, and Problem Reports. 6834. https://researchrepository.wvu.edu/etd/6834 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Jianbo Yao, Ph.D., Chair James Kotcon, Ph.D.
    [Show full text]