Novel Hydrogenase Isolated from Thermococcus Spp., Genes Encoding the Same, and Methods for Producing Hydrogen Using Microorganisms with the Genes

Total Page:16

File Type:pdf, Size:1020Kb

Novel Hydrogenase Isolated from Thermococcus Spp., Genes Encoding the Same, and Methods for Producing Hydrogen Using Microorganisms with the Genes (19) & (11) EP 2 333 054 A2 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 15.06.2011 Bulletin 2011/24 C12N 9/04 (2006.01) C12N 15/53 (2006.01) C12P 3/00 (2006.01) (21) Application number: 09811732.8 (86) International application number: (22) Date of filing: 07.09.2009 PCT/KR2009/005060 (87) International publication number: WO 2010/027233 (11.03.2010 Gazette 2010/10) (84) Designated Contracting States: • KWON, Kae Kyoung AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Ansan-si HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Gyeonggi-do 426-150 (KR) PT RO SE SI SK SM TR • CHA, Sun Shin Designated Extension States: Ansan-si AL BA RS Gyeonggi-do 425-020 (KR) • JEON, Jung Ho (30) Priority: 05.09.2008 KR 20080087794 Ansan-si 05.09.2008 KR 20080087806 Gyeonggi-do 426-170 (KR) • CHO, Yona (71) Applicant: Korea Ocean Research and Yongin-si Development Institute Gyeonggi-do 449-913 (KR) Ansan Si, Gyeonggi-do 426-744 (KR) • KIM, Yun Jae Ansan-si (72) Inventors: Gyeonggi-do 426-170 (KR) • LEE, Jung Hyun • BAE, Seung Seop Seongnam-si Ansan-si Gyeonggi-do 463-914 (KR) Gyeonggi-do 426-170 (KR) • KANG, Sung Gyun • LIM, Jae Kyu Ansan-si Siheung-si Gyeonggi-do 426-170 (KR) Gyeonggi-do 429-450 (KR) • LEE, Hyun Sook • JEONG, In Soon Ansan-si Changwon-si Gyeonggi-do 426-170 (KR) Gyeongsangnam-do 641-826 (KR) • KIM, Sang Jin Ansan-si (74) Representative: Viering, Jentschura & Partner Gyeonggi-do 426-751 (KR) Grillparzerstrasse 14 81675 München (DE) (54) NOVEL HYDROGENASE ISOLATED FROM THERMOCOCCUS SPP., GENES ENCODING THE SAME, AND METHODS FOR PRODUCING HYDROGEN USING MICROORGANISMS WITH THE GENES (57) The present invention relates to novel hydroge- in specific culture conditions. Thus, the methods of the nases isolated from novel hyperthermophilic strains be- invention have advantages in that they are more eco- longing to Thermococcus spp., genes encoding the hy- nomic and efficient than existing hydrogen production drogenases, and methods of producing hydrogen using methods and can produce hydrogen even at high tem- strains having the genes. According to the hydrogen pro- perature. duction methods of the invention, a large amount of hy- drogen can be produced merely by culturing the strains EP 2 333 054 A2 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 333 054 A2 2 EP 2 333 054 A2 Description BACKGROUND OF THE INVENTION 5 Technical Field [0001] The present invention relates to novel hydrogenases isolated from novel strains belonging to the genus Ther- mococcus, genes encoding the same, and methods of producing hydrogen using strains having the genes. 10 Background Art [0002] Hydrogen energy is receiving attention as a next-generation energy source that can substitute for fossil fuels, because its calorific value per unit weight is at least three times higher than that of petroleum oils, while it does not emit substances that can adversely affect the environment, such as carbon dioxide, NOx and SOx. 15 [0003] Conventional processes for producing hydrogen include electrolysis of water, and the thermal-cracking or steam reforming of natural gas or naphtha. However, these production processes have a problem in that they require fossil fuels to provide high-temperature and high-pressure conditions. Also, these methods generate mixed gases containing carbon monoxide, and thus require a difficult process of removing carbon monoxide from the mixed gases. [0004] On the other hand, biological methods of producing hydrogen using microorganisms have advantages in that 20 it is not needed to make high-temperature and high-pressure conditions by introducing separate energy and in that the produced gases contain no carbon monoxide. Such biological hydrogen production methods can be broadly classified into methods utilizing photosynthetic microorganisms and methods utilizing non-photosynthetic microorganisms (mainly anaerobic microorganisms). Examples of the former methods include a method described in Korean Patent Registration No. 10-0680624, entitled "A method of producing hydrogen using the photosynthetic bacteria Rhodobacter sphaeroides 25 strain having high hydrogen productivity at high salt concentration. [0005] However, the technology of culturing photosynthetic bacteria at high concentration using light as an energy source is not yet sufficiently developed, and prior photosynthetic bacteria have a shortcoming in that substrate inhibition is severe when a substrate of high partial pressure exists. Also, these bacteria have a problem in that their hydrogen production capacity can be maintained only in the presence of light. 30 [0006] Accordingly, attempts to produce hydrogen using microorganisms that can produce hydrogen using organic carbon have been continuously made, and examples thereof include Korean Patent Registration No. 10-0315663, entitled "Citrobacter sp. Y19 and production of hydrogen using the same", and Korean Patent Registration No. 10-0315662, entitled "Rhodopseduomonas palustris P4 and production of hydrogen using the same". [0007] The present inventors previously filed a patent application relating to novel proteins isolated from novel hyper- 35 thermophilic Thermococcus onnurineus NA1 (accession number: KCTC 10859BP) and genes encoding the same on September 5, 2008 (Korean Patent Application No. 10-2008-0087794), and the present invention particularly relates to genes related to hydrogen production among the proteins and genes disclosed in the patent application. The present inventors have carried out experiments on the hydrogen production capacity of the above-described strain and, as a result, have found that the strain produces a large amount of hydrogen even in a high-temperature environment, and 40 have also found novel hydrogenases which are highly expressed, particularly in culture conditions supplemented with carbon monoxide (CO) or formate, thereby completing the present invention. SUMMARY OF THE INVENTION 45 [0008] It is an object of the present invention to provide hydrogenases isolated from hyperthermophilic Thermococcus spp. which can produce hydrogen even in a high- temperature environment, genes encoding the same, and methods of efficiently producing hydrogen using strains having the genes. [0009] To achieve the above object, the present invention provides hydrogenases isolated from the Thermococcus spp. strain capable of producing hydrogen in aerobic culture conditions, and genes encoding the same. Also, the present 50 invention provides a method of producing hydrogen by culturing the strain, and a method of producing hydrogen using the genes. [0010] In a first aspect, the present invention provides hydrogenases which are produced by the novel hyperther- mophilic strain Thermococcus onnurineus NA1 (accession number: KCTC 10859BP).T. onnurineus NA1 has eight novel hydrogenase gene clusters, and the amino acid sequences of hydrogenases belonging thereto are shown in SEQ 55 ID NO. 1 to SEQ ID NO: 8. [0011] In a second aspect, the present invention provides genes encoding said amino acid sequences. The genes are preferably, but not limited to, genes of SEQ ID NO. 12 to SEQ ID NO: 19 (the amino acid sequences of SEQ ID NO. 1 to SEQ ID NO: 8 correspond to the genes of SEQ ID NO. 12 to SEQ ID NO: 19, respectively). 3 EP 2 333 054 A2 [0012] In a third aspect, the present invention provides a method of producing hydrogen by culturing Thermococcus spp. The method comprises the steps of: 1) preparing a medium in a culture vessel; 2) culturing Thermococcus spp. in the culture vessel; 3) extracting hydrogen from the culture vessel. The Thermococcus spp. is preferably Thermococcus onnurineus NA1 (accession number: KCTC 10859BP). 5 [0013] In addition, the medium may be a medium supplemented with one or more selected from the group consisting of carbon monoxide, formate and starch. The culturing may be carried out at a high temperature of 80 °C in an anaerobic condition. [0014] In a fourth aspect, the present invention provides a dehydrogenase comprising at least one amino acid sequence selected from the group consisting of SEQ ID NO: 9 to SEQ ID NO: 11. 10 [0015] In a fifth aspect, the present invention provides a gene encoding the dehydrogenase. Preferably, the gene has a base sequence selected from SEQ ID NO: 20 to SEQ ID NO: 22 (the amino acids of SEQ ID NOs: 9 to 11 correspond to SEQ ID NOs: 20 to 22, respectively). [0016] In a sixth aspect, the present invention provides a recombinant vector comprising genes that are organized in a CODH-MCH-MNH3 hydrogenase cluster in T. onnurineus NA1, wherein the genes are all operably linked. Preferably, 15 the genes include, but are not limited to, genes of SEQ ID NO: 21 (CODH dehydrogenase) and SEQ ID NO: 16 (MCH hydrogenase). In addition, the present invention provides a host cell transformed with the recombinant vector. [0017] Also, the present invention provides a method of producing hydrogen using said transformant, the method comprising the steps of: preparing a medium in a culture vessel; feeding carbon monoxide into a gas phase of the culture vessel; culturing said transformant in the culture vessel; and extracting hydrogen from the culture vessel. 20 [0018] In a seventh aspect, the present invention provides a recombinant vector comprising genes that are organized in a FDH2- MFH2-MNH2 hydrogenase cluster in T. onnurineus NA1, wherein the genes are all operably linked. Preferably, the genes include, but are not limited to, genes of SEQ ID NO: 22 (FDH2 dehydrogenase) and SEQ ID NO: 18 (MFH2 hydrogenase). In addition, the present invention provides a host cell transformed with the recombinant vector. [0019] Also, the present invention provides a method of producing hydrogen using said transformant, the method 25 comprising the steps of: preparing a formate-containing medium in a culture vessel; culturing said transformant in the culture vessel; and extracting hydrogen from the culture vessel.
Recommended publications
  • A Web Tool for Hydrogenase Classification and Analysis Dan Søndergaard1, Christian N
    www.nature.com/scientificreports OPEN HydDB: A web tool for hydrogenase classification and analysis Dan Søndergaard1, Christian N. S. Pedersen1 & Chris Greening2,3 H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The Received: 24 June 2016 metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla Accepted: 09 September 2016 and are present in all major ecosystems. We developed a classification system and web tool, HydDB, Published: 27 September 2016 for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ Microorganisms conserve energy by metabolizing H2. Oxidation of this high-energy fuel yields electrons that can be used for respiration and carbon-fixation. This diffusible gas is also produced in diverse fermentation and 1 anaerobic respiratory processes . H2 metabolism contributes to the growth and survival of microorganisms across the three domains of life, including chemotrophs and phototrophs, lithotrophs and heterotrophs, aerobes and 1,2 anaerobes, mesophiles and extremophiles alike .
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • A Web Tool for Hydrogenase Classification and Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 HydDB: A web tool for hydrogenase 2 classification and analysis 3 Dan Søndergaarda, Christian N. S. Pedersena, Chris Greeningb, c* 4 5 a Aarhus University, Bioinformatics Research Centre, C.F. Møllers Allé 8, Aarhus 6 DK-8000, Denmark 7 b The Commonwealth Scientific and Industrial Research Organisation, Land and 8 Water Flagship, Clunies Ross Street, Acton, ACT 2060, Australia 9 c Monash University, School of Biological Sciences, Clayton, VIC 2800, Australia 10 11 Correspondence: 12 Dr Chris Greening ([email protected]), Monash University, School of 13 Biological Sciences, Clayton, VIC 2800, Australia 14 Dan Søndergaard ([email protected]), Aarhus University, Bioinformatics Research 15 Centre, C.F. Møllers Allé 8, Aarhus DK-8000, Denmark 1 bioRxiv preprint doi: https://doi.org/10.1101/061994; this version posted September 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 H2 metabolism is proposed to be the most ancient and diverse mechanism of 18 energy-conservation. The metalloenzymes mediating this metabolism, 19 hydrogenases, are encoded by over 60 microbial phyla and are present in all major 20 ecosystems.
    [Show full text]
  • Downloaded from the Genome NCBI
    bioRxiv1 preprint doi: https://doi.org/10.1101/765248; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia 2 and some have a novel nitrogenase paralog. 3 4 Raphaël Méheust1,2, Cindy J. Castelle1,2, Paula B. Matheus Carnevali1,2, Ibrahim F. Farag3, Christine He1, 5 Lin-Xing Chen1,2, Yuki Amano4, Laura A. Hug5, and Jillian F. Banfield1,2,*. 6 7 1Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, 8 USA 9 2Innovative Genomics Institute, Berkeley, CA 94720, USA 10 3School of Marine Science and Policy, University of Delaware, Lewes, DE 19968, USA 11 4Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Ibaraki, Japan 12 5Department of Biology, University of Waterloo, ON, Canada 13 *Corresponding author: Email: [email protected] 14 15 Abstract 16 Currently described members of Elusimicrobia, a relatively recently defined phylum, are animal- 17 associated and rely on fermentation. However, free-living Elusimicrobia have been detected in sediments, 18 soils and groundwater, raising questions regarding their metabolic capacities and evolutionary 19 relationship to animal-associated species. Here, we analyzed 94 draft-quality, non-redundant genomes, 20 including 30 newly reconstructed genomes, from diverse animal-associated and natural environments. 21 Genomes group into 12 clades, 10 of which previously lacked reference genomes. Groundwater- 22 associated Elusimicrobia are predicted to be capable of heterotrophic or autotrophic lifestyles, reliant on 23 oxygen or nitrate/nitrite-dependent respiration, or a variety of organic compounds and Rhodobacter 24 nitrogen fixation-dependent (Rnf-dependent) acetogenesis with hydrogen and carbon dioxide as the 25 substrates.
    [Show full text]
  • The Complete Genome Sequence of Chlorobium Tepidum TLS, a Photosynthetic, Anaerobic, Green-Sulfur Bacterium
    The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium Jonathan A. Eisen*†, Karen E. Nelson*, Ian T. Paulsen*, John F. Heidelberg*, Martin Wu*, Robert J. Dodson*, Robert Deboy*, Michelle L. Gwinn*, William C. Nelson*, Daniel H. Haft*, Erin K. Hickey*, Jeremy D. Peterson*, A. Scott Durkin*, James L. Kolonay*, Fan Yang*, Ingeborg Holt*, Lowell A. Umayam*, Tanya Mason*, Michael Brenner*, Terrance P. Shea*, Debbie Parksey*, William C. Nierman*, Tamara V. Feldblyum*, Cheryl L. Hansen*, M. Brook Craven*, Diana Radune*, Jessica Vamathevan*, Hoda Khouri*, Owen White*, Tanja M. Gruber‡, Karen A. Ketchum*§, J. Craig Venter*, Herve´ Tettelin*, Donald A. Bryant¶, and Claire M. Fraser* *The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850; ¶Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and ‡Department of Stomatology, Microbiology and Immunology, University of California, San Francisco, CA 94143 Communicated by Alexander N. Glazer, University of California System, Oakland, CA, March 28, 2002 (received for review January 8, 2002) The complete genome of the green-sulfur eubacterium Chlorobium Here we report the determination and analysis of the complete tepidum TLS was determined to be a single circular chromosome of genome of C. tepidum TLS, the type strain of this species. 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosyn- Materials and Methods thesis by the reductive tricarboxylic acid cycle. Genome comparisons Genome Sequencing. C. tepidum genomic DNA was isolated as have identified genes in C. tepidum that are highly conserved among described (5).
    [Show full text]
  • Molecular Biology of Microbial Hydrogenases
    Curr. Issues Mol. Biol. (2004) 6: 159-188. Molecular Biology of MicrobialOnline journal Hydrogenases at www.cimb.org 159 Molecular Biology of Microbial Hydrogenases P.M. Vignais and A. Colbeau oxidize H2. The key enzyme involved in the metabolism of H2 is the hydrogenase (H2ase) enzyme. CEA Grenoble, Laboratoire de Biochimie et Biophysique H2ases catalyze the simplest chemical reaction: + - des Systèmes Intégrés, UMR CEA/CNRS/UJF n° 5092, 2 H + 2 e <--> H2. Département de Réponse et Dynamique Cellulaires, 17 The reaction is reversible and its direction depends on the rue des Martyrs, 38054 Grenoble Cedex 9, France redox potential of the components able to interact with the enzyme. In the presence of an electron acceptor, a H2ase will act as a H2 uptake enZyme, while in the presence of an Abstract electron donor, the enzyme will produce H2. It is necessary to understand how microorganisms metabolize H2 in order Hydrogenases (H2ases) are metalloproteins. The great to induce them to produce H2 continuously and in large majority of them contain iron-sulfur clusters and two amounts. metal atoms at their active center, either a Ni and The combination of X-ray crystallography, molecular an Fe atom, the [NiFe]-H2ases, or two Fe atoms, the biology and spectroscopic techniques has markedly [FeFe]-H2ases. Enzymes of these two classes catalyze accelerated the pace of study of the H2ase enzymes. The the reversible oxidation of hydrogen gas (H2 <--> 2 prospect of understanding how these enzymes function is H+ + 2 e- ) and play a central role in microbial energy the creation of biomimetic and biotechnological devices for metabolism; in addition to their role in fermentation and energy production.
    [Show full text]
  • Evolutionary History of Redox Metal-Binding Domains Across the Tree of Life
    Evolutionary history of redox metal-binding domains across the tree of life Arye Harela, Yana Brombergb, Paul G. Falkowskia,c,1, and Debashish Bhattacharyad aEnvironmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Science, bDepartment of Biochemistry and Microbiology, and dDepartment of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901; and cDepartment of Earth and Planetary Sciences, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854 Contributed by Paul G. Falkowski, March 4, 2014 (sent for review October 23, 2013; reviewed by Edward F. DeLong and Michael Lynch) Oxidoreductases mediate electron transfer (i.e., redox) reactions diverged family members (2, 14, 15). The evolutionary relation- across the tree of life and ultimately facilitate the biologically driven ships of protein families identified using profile HMMs may be fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. reconstructed with similarity networks. These networks are com- The core enzymes responsible for these reactions are ancient, often posed of vertices (nodes), which represent protein sequences, small in size, and highly diverse in amino acid sequence, and many connected by edges, representing similarity above a specified cut- require specific transition metals in their active sites. Here we re- off. Protein similarity networks offer an appealing alternative to construct the evolution of metal-binding domains in extant oxidor- phylogenetic approaches that rely on simultaneous multiple se- eductases using a flexible network approach and permissive profile quence alignments to reconstruct strictly bifurcating trees. By in- alignments based on available microbial genome data. Our results corporating different metrics (e.g., pairwise alignment of profiles or suggest there were at least 10 independent origins of redox domain sequence-to-profile alignments), network analysis provides a flexi- families.
    [Show full text]
  • Sulfide Dehydrogenase from the Hyperthermophilic Archaeon
    JOURNAL OF BACrERIOLOGY, Nov. 1994, p. 6509-6517 Vol. 176, No. 21 0021-9193/94/$04.00+0 Copyright X 1994, American Society for Microbiology Sulfide Dehydrogenase from the Hyperthermophilic Archaeon Pyrococcus furiosus: a New Multifunctional Enzyme Involved in the Reduction of Elemental Sulfur KESEN MA AND MICHAEL W. W. ADAMS* Department ofBiochemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602 Received 18 May 1994/Accepted 17 August 1994 Pyrococcus furiosus is an anaerobic archaeon that grows optimally at 1000C by the fermentation of carbohydrates yielding acetate, C02, and H2 as the primary products. If elemental sulfur (SO) or polysulfide is added to the growth medium, H2S is also produced. The cytoplasmic hydrogenase of P. furiosus, which is responsible for H2 production with ferredoxin as the electron donor, has been shown to also catalyze the reduction of polysulfide to H2S (K. Ma, R. N. Schicho, R. M. Kelly, and M. W. W. Adams, Proc. Natl. Acad. Sci. USA 90:5341-5344, 1993). From the cytoplasm of this organism, we have now purified an enzyme, sulfide dehydrogenase (SuDH), which catalyzes the reduction ofpolysulfide to H2S with NADPH as the electron donor. SuDH is a heterodimer with subunits of52,000 and 29,000 Da. SuDH contains fiavin and approximately 11 iron and 6 acid-labile sulfide atoms per mol, but no other metals were detected. Analysis of the enzyme by electron paramagnetic resonance spectroscopy indicated the presence of four iron-sulfur centers, one of which was specifically reduced by NADPH. SuDH has a half-life at 950C of about 12 h and shows a 50o increase in activity after 12 h at 82C.
    [Show full text]
  • Genomic Analysis of Uncultured Microbes in Marine Sediments
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Singled Out: Genomic analysis of uncultured microbes in marine sediments Jordan Toby Bird University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Bird, Jordan Toby, "Singled Out: Genomic analysis of uncultured microbes in marine sediments. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4829 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jordan Toby Bird entitled "Singled Out: Genomic analysis of uncultured microbes in marine sediments." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Karen G. Lloyd, Major Professor We have read this dissertation and recommend its acceptance: Mircea Podar, Andrew D. Steen, Erik R. Zinser Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Singled Out: Genomic analysis of uncultured microbes in marine sediments A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jordan Toby Bird December 2017 Copyright © 2017 by Jordan Bird All rights reserved.
    [Show full text]
  • Genomic Insights Into the Carbon and Energy Metabolism of A
    Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres Alexander Slobodkin, Galina Slobodkina, Maxime Allioux, Karine Alain, Mohamed Jebbar, Valerian Shadrin, Ilya Kublanov, Stepan Toshchakov, Elizaveta Bonch-Osmolovskaya To cite this version: Alexander Slobodkin, Galina Slobodkina, Maxime Allioux, Karine Alain, Mohamed Jebbar, et al.. Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres. Genes, MDPI, 2019, 10 (11), pp.849. 10.3390/genes10110849. hal-02359529 HAL Id: hal-02359529 https://hal.archives-ouvertes.fr/hal-02359529 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. G C A T T A C G G C A T genes Article Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres
    [Show full text]
  • Genomic and Metagenomic Surveys of Hydrogenase Distribution Indicate H2 Is a Widely Utilised Energy Source for Microbial Growth and Survival
    The ISME Journal (2016) 10, 761–777 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival Chris Greening1,2, Ambarish Biswas1, Carlo R Carere3,4, Colin J Jackson5, Matthew C Taylor2, Matthew B Stott3, Gregory M Cook1,6 and Sergio E Morales1 1Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; 2The Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship, Acton, Australian Capital Territory, Australia; 3GNS Science, Wairakei Research Centre, Taupō, New Zealand; 4Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand; 5Australian National University, Research School of Chemistry, Acton, Australian Capital Territory, Australia and 6University of Auckland, Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand Recent physiological and ecological studies have challenged the long-held belief that microbial metabolism of molecular hydrogen (H2) is a niche process. To gain a broader insight into the importance of microbial H2 metabolism, we comprehensively surveyed the genomic and metage- nomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution of H2. The protein sequences of 3286 non-redundant putative hydrogenases were curated from publicly available databases. These metalloenzymes were classified into multiple groups based on (1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and (4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase, three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were identified.
    [Show full text]
  • Insight Into the Evolution of Microbial Metabolism from the Deep- 2 Branching Bacterium, Thermovibrio Ammonificans 3 4 5 Donato Giovannelli1,2,3,4*, Stefan M
    1 Insight into the evolution of microbial metabolism from the deep- 2 branching bacterium, Thermovibrio ammonificans 3 4 5 Donato Giovannelli1,2,3,4*, Stefan M. Sievert5, Michael Hügler6, Stephanie Markert7, Dörte Becher8, 6 Thomas Schweder 8, and Costantino Vetriani1,9* 7 8 9 1Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, NJ 08901, 10 USA 11 2Institute of Marine Science, National Research Council of Italy, ISMAR-CNR, 60100, Ancona, Italy 12 3Program in Interdisciplinary Studies, Institute for Advanced Studies, Princeton, NJ 08540, USA 13 4Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan 14 5Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 15 6DVGW-Technologiezentrum Wasser (TZW), Karlsruhe, Germany 16 7Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, 17 17487 Greifswald, Germany 18 8Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany 19 9Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA 20 21 *Correspondence to: 22 Costantino Vetriani 23 Department of Biochemistry and Microbiology 24 and Institute of Earth, Ocean and Atmospheric Sciences 25 Rutgers University 26 71 Dudley Rd 27 New Brunswick, NJ 08901, USA 28 +1 (848) 932-3379 29 [email protected] 30 31 Donato Giovannelli 32 Institute of Earth, Ocean and Atmospheric Sciences 33 Rutgers University 34 71 Dudley Rd 35 New Brunswick, NJ 08901, USA 36 +1 (848) 932-3378 37 [email protected] 38 39 40 Abstract 41 Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the 42 lineage of these modern organisms co-evolved with our planet.
    [Show full text]