Investigation of Physiological and Behavioral Alarm Responses in Larval White Sturgeon (Acipenser Transmontanus)

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Physiological and Behavioral Alarm Responses in Larval White Sturgeon (Acipenser Transmontanus) Investigation of physiological and behavioral alarm responses in larval white sturgeon (Acipenser transmontanus) by Junho Eom B.Sc., Kangwon National University, 2003 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) May 2016 © Junho Eom, 2016 Abstract White sturgeon populations in North America have dramatically decreased because of the commercial demand for caviar in the past and anthropogenic activities in the present. To conserve white sturgeon, recovery planning is required to ensure that the fish are self- sustaining through natural reproduction. However, little is known about many important aspects of white sturgeon biology, including their ability to detect and respond to alarm cues, the goal of this thesis. My results show that larval white sturgeon possess epidermal club cells, which in other fish are known to contain alarm cues. I investigated the effect of exposure to whole body extracts (WBE) of conspecifics (which contain the epidermal cells) on olfaction, through the use of electro-olfactogram (EOG), and investigated the effect of WBE exposure on behavioural responses and whole body cortisol levels in ~20 day post hatch white sturgeon larvae. The fish larvae showed alarm behaviors, such as avoidance, dashing, and freezing when exposed to WBE. In WBE treatment, the fish also increased whole body cortisol levels that are known as an indicator of stress. This thesis not only provides information on fundamental aspects of white sturgeon biology, but also may help fisheries management to understand how alarm substances are perceived in hatchery-reared naïve white sturgeon larvae. ii Preface This thesis is an original intellectual product of the author, J. Eom. The animal research reported in Chapter 2 was approved by the University of British Columbia Animal Research Ethics Board (A15-0266) and was in accordance with the guideline of the Canadian Council on Animal Care. The section on “2.3.5 Whole body steroid extraction for cortisol analysis” was conducted by Satbir Rai. iii Table of contents Abstract .................................................................................................................................. ii Preface................................................................................................................................... iii Table of contents ................................................................................................................... iv List of tables .......................................................................................................................... vi List of figures ....................................................................................................................... vii Acknowledgements ............................................................................................................... ix Chapter 1: General introduction............................................................................................. 1 1.1 White sturgeon in North America ................................................................................. 1 1.1.1 Description .............................................................................................................. 1 1.1.2 Distribution ............................................................................................................. 1 1.1.3 Life history .............................................................................................................. 2 1.1.4 Threats and limiting factors .................................................................................... 2 1.1.5 Research efforts to conserve white sturgeon .......................................................... 3 1.2 Alarm pheromones in fish ............................................................................................. 4 1.2.1 Sensory systems and alarm substances ................................................................... 4 1.2.2 Alarm pheromones .................................................................................................. 6 1.2.3 Origin of alarm substances...................................................................................... 8 1.2.4 Predator-prey relationships and alarm responses .................................................... 9 1.3 Stress and alarm behaviors .......................................................................................... 10 1.3.1 Definition of stress ............................................................................................... 10 1.3.2 Stress response in fish .......................................................................................... 10 1.3.3 Potential use of alarm pheromones in fisheries management .............................. 11 1.4 Thesis objectives and hypotheses ............................................................................... 12 Chapter 2: Characterization of alarm responses in white sturgeon larvae ........................... 15 2.1 Introduction ................................................................................................................. 15 2.2 Materials and methods ................................................................................................ 16 2.2.1 Experimental animals and maintenance ................................................................ 16 2.2.2 Histology of white sturgeon larvae ....................................................................... 17 2.2.3 Whole Body Extract preparation .......................................................................... 18 iv 2.2.4 Electrophysiological examination of olfactory responses to EOG stimuli ........... 18 2.2.5 Behavior assays to whole body extract ................................................................ 21 2.2.5.1 Two-choice maze assay .................................................................................. 21 2.2.5.2 Petri dish assay ................................................................................................ 22 2.2.6 Whole body steroid extraction for cortisol analysis ............................................. 23 2.2.7 Data analyses ........................................................................................................ 24 2.3 Results ......................................................................................................................... 25 2.3.1 Histology of white sturgeon larvae ....................................................................... 25 2.3.2 Electrophysiological examination of olfactory responses to EOG stimuli ........... 25 2.3.3 Two-choice maze assay ........................................................................................ 27 2.3.4 Petri dish assay ...................................................................................................... 27 2.3.5 Whole body steroid extraction for cortisol analysis ............................................. 27 2.4 Discussion ................................................................................................................... 28 2.4.1 Identification of club cells .................................................................................... 28 2.4.2 Electrophysiological examination of olfactory responses to EOG stimuli ........... 29 2.4.3 Avoidance behavior of larval white sturgeon ....................................................... 30 2.4.4 Behavioral responses to alarm cues ...................................................................... 31 2.4.5 Physiological effects of alarm cues on stress responses ....................................... 33 2.4.6 Conspecific alarm cues in fisheries management ................................................. 34 Chapter 3: Conclusions ........................................................................................................ 49 3.1 Thesis summary .......................................................................................................... 49 3.2 Thesis objectives and hypotheses ............................................................................... 49 3.3 Research limitations and future directions .................................................................. 51 References ............................................................................................................................ 52 v List of tables Table 1: List of representative examples of alarm cues in other species and their responses…………………………………………………………………………..…..36 vi List of figures Figure 1: Electro-olfactogram (EOG) of early life stages of white sturgeon. In anesthetized fish (tricaine methanesulfonate, 0.0375 mg/ml, final concentration), olfactory sensitivity was examined by delivering chemical stimuli. Olfactory response magnitudes were amplified and visualized for analysis……………………………38 Figure 2: Avoidance behavior was observed in two-choice maze assay. After acclimation, A) avoidance behavior was tested with respect to freshwater (FW) or alarm pheromone contained whole body extract (WBE). In order to drain waste efficiently, B) overall system was tilted at 10 degrees. For video analysis, fish behavior was recorded…………………………………………………….39 Figure 3: Histology sections of early life stages of white sturgeon. Sliced epidermal club cells (ECC) and mucous cells (MC) in the epidermal layer (E) were magnified
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • A Review of Hearing by Sturgeon and Lamprey
    A Review of Hearing by Sturgeon and Lamprey Arthur N. Popper Environmental BioAcoustics, LLC Rockville, MD 20853 Submitted to the U.S. Army Corps of Engineers, Portland District August 12, 2005 ms-coe Sturgeon & Lamprey Page 1 of 23 Contents 1. Introduction............................................................................................................................... 3 2. Hearing Capabilities, Detection, and Sound Production ...................................................... 3 a. Sensory cells of the ear ....................................................................................................... 4 b. The Lateral Line.................................................................................................................. 4 c. The Inner Ear ........................................................................................................................ 6 d. Hearing ................................................................................................................................. 7 e. Why Do Fish Hear ................................................................................................................ 9 f. Sound Production .................................................................................................................... 9 3. Underwater Acoustics – A brief overview ............................................................................ 10 4. Bioacoustics of sturgeon and lamprey..................................................................................
    [Show full text]
  • The AQUATIC DESIGN CENTRE
    The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi
    [Show full text]
  • Conserved Keratin Gene Clusters in Ancient Fish: an Evolutionary Seed for Terrestrial Adaptation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.063123; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Conserved Keratin Gene Clusters in Ancient Fish: an Evolutionary Seed for Terrestrial Adaptation Yuki Kimura1 and Masato Nikaido*,1 1 School of Life Science and Technology, Tokyo Institute of Technology * Corresponding author: E-mail: [email protected] Keywords: Gene cluster; Keratin; Vertebrate evolution; Comparative genomics; Phylogenetics; Selection analysis; Synteny analysis Highlights Two major keratin clusters are conserved from sharks to terrestrial vertebrates. Adult epidermis-specific keratins in amphibians stem from the two major clusters. A novel keratin gene subcluster was found in reedfish. Ancestral krt18/krt8 gene sets were found in all vertebrates. Functional diversification signatures were found in reedfish and amphibian keratins. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.063123; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Type I and type II keratins are subgroups of intermediate filament proteins that provide toughness to the epidermis and protect it from water loss. In terrestrial vertebrates, the keratin genes form two major clusters, clusters 1 and 2, each of which is dominated by type I and II keratin genes.
    [Show full text]
  • An Alignment-Free Computational Tool for Analyzing and Visualizing DNA Sequences' Interrelationships Rallis Karamichalis the University of Western Ontario
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository September 2016 Molecular Distance Maps: An alignment-free computational tool for analyzing and visualizing DNA sequences' interrelationships Rallis Karamichalis The University of Western Ontario Supervisor Prof. Lila Kari The University of Western Ontario Graduate Program in Computer Science A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy © Rallis Karamichalis 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Computer Sciences Commons Recommended Citation Karamichalis, Rallis, "Molecular Distance Maps: An alignment-free computational tool for analyzing and visualizing DNA sequences' interrelationships" (2016). Electronic Thesis and Dissertation Repository. 4071. https://ir.lib.uwo.ca/etd/4071 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract In an attempt to identify and classify species based on genetic evidence, we propose a novel combination of methods to quantify and visualize the interrelationships between thousand of species. This is possible by using Chaos Game Representation (CGR) of DNA sequences to compute genomic signatures which we then compare by computing pairwise distances. In the last step, the original DNA sequences are embedded in a high dimensional space using Multi- Dimensional Scaling (MDS) before everything is projected on a Euclidean 3D space. To start with, we apply this method to a mitochondrial DNA dataset from NCBI containing over 3,000 species.
    [Show full text]
  • The Sterlet Sturgeon Genome Sequence and the Mechanisms Of
    The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization Kang Du, Matthias Stöck, Susanne Kneitz, Christophe Klopp, Joost Woltering, Mateus Contar Adolfi, Romain Feron, Dmitry Prokopov, Alexey Makunin, Ilya Kichigin, et al. To cite this version: Kang Du, Matthias Stöck, Susanne Kneitz, Christophe Klopp, Joost Woltering, et al.. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology & Evolution, Nature, 2020, 4 (6), pp.841-852. 10.1038/s41559-020-1166-x. hal-02640938 HAL Id: hal-02640938 https://hal.inrae.fr/hal-02640938 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLES https://doi.org/10.1038/s41559-020-1166-x The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization Kang Du1,2, Matthias Stöck 3 ✉ , Susanne Kneitz1, Christophe Klopp 4,5, Joost M. Woltering6, Mateus Contar Adolfi1, Romain Feron 7, Dmitry Prokopov 8, Alexey Makunin 8, Ilya Kichigin8, Cornelia Schmidt1, Petra Fischer1, Heiner Kuhl3, Sven Wuertz3, Jörn Gessner3, Werner Kloas3, Cédric Cabau4,5, Carole Iampietro9, Hugues Parrinello10, Chad Tomlinson11, Laurent Journot10, John H. Postlethwait12, Ingo Braasch13, Vladimir Trifonov8, Wesley C. Warren14, Axel Meyer 6, Yann Guiguen 15 and Manfred Schartl 2,16,17 ✉ Sturgeons seem to be frozen in time.
    [Show full text]
  • The Divergent Genomes of Teleosts
    Postprint copy Annu. Rev. Anim. Biosci. 2018. 6:X--X https://doi.org/10.1146/annurev-animal-030117-014821 Copyright © 2018 by Annual Reviews. All rights reserved RAVI ■ VENKATESH DIVERGENT GENOMES OF TELEOSTS THE DIVERGENT GENOMES OF TELEOSTS Vydianathan Ravi and Byrappa Venkatesh Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore; email: [email protected], [email protected] ■ Abstract Boasting nearly 30,000 species, teleosts account for half of all living vertebrates and approximately 98% of all ray-finned fish species (Actinopterygii). Teleosts are also the largest and most diverse group of vertebrates, exhibiting an astonishing level of morphological, physiological, and behavioral diversity. Previous studies had indicated that the teleost lineage has experienced an additional whole-genome duplication event. Recent comparative genomic analyses of teleosts and other bony vertebrates using spotted gar (a nonteleost ray-finned fish) and elephant shark (a cartilaginous fish) as outgroups have revealed several divergent features of teleost genomes. These include an accelerated evolutionary rate of protein-coding and nucleotide sequences, a higher rate of intron turnover, and loss of many potential cis-regulatory elements and shorter conserved syntenic blocks. A combination of these divergent genomic features might have contributed to the evolution of the amazing phenotypic diversity and morphological innovations of teleosts. Keywords whole-genome duplication, evolutionary rate, intron turnover, conserved noncoding elements, conserved syntenic blocks, phenotypic diversity INTRODUCTION With over 68,000 known species (IUCN 2017; http://www.iucnredlist.org), vertebrates are the most dominant and successful group of animals on earth, inhabiting both terrestrial and aquatic habitats.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Zoo Keeper Information
    ZOO KEEPER INFORMATION Auckland Zoo and its role in Conservation and Captive Breeding Programmes Revised by Kirsty Chalmers Registrar 2006 CONTENTS Introduction 3 Auckland Zoo vision, mission and strategic intent 4 The role of modern zoos 5 Issues with captive breeding programmes 6 Overcoming captive breeding problems 7 Assessing degrees of risk 8 IUCN threatened species categories 10 Trade in endangered species 12 CITES 12 The World Zoo and Aquarium Conservation Strategy 13 International Species Information System (ISIS) 15 Animal Records Keeping System (ARKS) 15 Auckland Zoo’s records 17 Identification of animals 17 What should go on daily reports? 18 Zoological Information Management System (ZIMS) 19 Studbooks and SPARKS 20 Species co-ordinators and taxon advisory groups 20 ARAZPA 21 Australasian Species Management Program (ASMP) 21 Animal transfers 22 Some useful acronyms 24 Some useful references 25 Appendices 26 Zoo Keeper Information 2006 2 INTRODUCTION The intention of this manual is to give a basic overview of the general operating environment of zoos, and some of Auckland Zoo’s internal procedures and external relationships, in particular those that have an impact on species management and husbandry. The manual is designed to be of benefit to all keepers, to offer a better understanding of the importance of captive animal husbandry and species management on a national and international level. Zoo Keeper Information 2006 3 AUCKLAND ZOO VISION Auckland Zoo will be globally acknowledged as an outstanding, progressive zoological park. AUCKLAND ZOO MISSION To focus the Zoo’s resources to benefit conservation and provide exciting visitor experiences which inspire and empower people to take positive action for wildlife and the environment.
    [Show full text]
  • Freshwater Aquatic Biomes GREENWOOD GUIDES to BIOMES of the WORLD
    Freshwater Aquatic Biomes GREENWOOD GUIDES TO BIOMES OF THE WORLD Introduction to Biomes Susan L. Woodward Tropical Forest Biomes Barbara A. Holzman Temperate Forest Biomes Bernd H. Kuennecke Grassland Biomes Susan L. Woodward Desert Biomes Joyce A. Quinn Arctic and Alpine Biomes Joyce A. Quinn Freshwater Aquatic Biomes Richard A. Roth Marine Biomes Susan L. Woodward Freshwater Aquatic BIOMES Richard A. Roth Greenwood Guides to Biomes of the World Susan L. Woodward, General Editor GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Roth, Richard A., 1950– Freshwater aquatic biomes / Richard A. Roth. p. cm.—(Greenwood guides to biomes of the world) Includes bibliographical references and index. ISBN 978-0-313-33840-3 (set : alk. paper)—ISBN 978-0-313-34000-0 (vol. : alk. paper) 1. Freshwater ecology. I. Title. QH541.5.F7R68 2009 577.6—dc22 2008027511 British Library Cataloguing in Publication Data is available. Copyright C 2009 by Richard A. Roth All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2008027511 ISBN: 978-0-313-34000-0 (vol.) 978-0-313-33840-3 (set) First published in 2009 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 Contents Preface vii How to Use This Book ix The Use of Scientific Names xi Chapter 1.
    [Show full text]
  • Evolutionary History of Teleost Intron-Containing and Intron-Less
    www.nature.com/scientificreports OPEN Evolutionary history of teleost intron-containing and intron-less rhodopsin genes Received: 15 February 2019 Chihiro Fujiyabu1, Keita Sato 2, Ni Made Laksmi Utari2,3, Hideyo Ohuchi2, Accepted: 9 July 2019 Yoshinori Shichida1,4,5 & Takahiro Yamashita1,5 Published: xx xx xxxx Recent progress in whole genome sequencing has revealed that animals have various kinds of opsin genes for photoreception. Among them, most opsin genes have introns in their coding regions. However, it has been known for a long time that teleost retinas express intron-less rhodopsin genes, which are presumed to have been formed by retroduplication from an ancestral intron-containing rhodopsin gene. In addition, teleosts have an intron-containing rhodopsin gene (exo-rhodopsin) exclusively for pineal photoreception. In this study, to unravel the evolutionary origin of the two teleost rhodopsin genes, we analyzed the rhodopsin genes of non-teleost fshes in the Actinopterygii. The phylogenetic analysis of full-length sequences of bichir, sturgeon and gar rhodopsins revealed that retroduplication of the rhodopsin gene occurred after branching of the bichir lineage. In addition, analysis of the tissue distribution and the molecular properties of bichir, sturgeon and gar rhodopsins showed that the abundant and exclusive expression of intron-containing rhodopsin in the pineal gland and the short lifetime of its meta II intermediate, which leads to optimization for pineal photoreception, were achieved after branching of the gar lineage. Based on these results, we propose a stepwise evolutionary model of teleost intron-containing and intron-less rhodopsin genes. Opsins are photoreceptive molecules that universally underlie the molecular basis of visual and non-visual pho- toreception in animals1–3.
    [Show full text]
  • Aquatic Design Centre
    AQUATIC DESIGN CENTRE Tropical Fish List (March 2017) Scientific Name Common Name Ancistrus cf. cirrhosus Albino Bristlenose Catfish Y Ancistrus cf. cirrhosus Red Bristlenose Cat Y Ancistrus cirrhosus Bristlenose Catfish Y Ancistrus dolichopterus Super Gold Ancistrus Y Ancistrus sp. Gold XL Y Aphyocharax rathbuni Rathbuni tetra Y Aphyosemion/Fundulopanchax gardneri Blue Lyretail/blue Gardneri Killi Y Aplocheilichthys normani Lampeye Killifish/Normans Lampeye Y Axelrodia riesei Ruby Tetra Y Badis badis Neon Blue Perch Y Badis badis Blue Perch Y Barbus conchonius Rosy Barb Y Barbus semifasciolatus Gold Barb Y Barbus tetrazonia Tiger Barb Y Barbus tetrazonia Green Tiger Barb Y Barbus tetrazonia Albino Tiger Barb Y Barbus titteya Cherry Barb Y Bedotia geayi Madagascar Rainbow Y Betta Brownorum Y Betta brownorum Y Betta splendens Veil Tail Male - Siamese fighting fish Y Betta splendens Female - Siamese fighting fish Y Betta splendens Over Halfmoon Y Betta splendens Plakat Y Betta splendens Solid Betta splendens Combtail Y Betta splendens Double Tail Betta splendens Super Delta Y Betta splendens Spade Tail Y Betta splendens Round Tail Boehlkea fredcochui Cochu's Blue tetra Y Boraras brigittae Chilli/Mosquito Rasbora Y Botia histrionica Burmese Loach Y Botia Striata Zebra Loach Y Brachydanio albolineatus Pearl Danio Y Brachydanio kyathit Fire Ring Danio Y Brachydanio rerio Zebra Danio Y Brachydanio sp. Hikari Danio Y Brevibora dorsiocellata Eyespot Rasbora Y Cardisoma armatum Rainbow Crab Y Carinotetraodon travancoricus Freshwater Puffer Y Celestichthys
    [Show full text]