OMGN 2018 Program FINAL

Total Page:16

File Type:pdf, Size:1020Kb

OMGN 2018 Program FINAL Journal of Shandong Agricultural University ( Natural Science Edition ) The picture was gotten from Wikipedia, the free encyclopedia. Oomycete Molecular Genetics Network Meeting 2018 • 1 • Oomycete Molecular Genetics Network Meeting 2018 The Oomycete Molecular Genetics Research Network (OMGN) was initially funded by an NSF Research Coordination Network grant in 2001 and continued to receive funding from the NSF for many years. More recently, the Network has received funding from various USDA AFRI programs. The purpose of our annual meeting is to promote communication and collaboration, and minimize the duplication of effort within the oomycete molecular genetics community. Our community now numbers well in excess of 100 laboratories from around the world, and research on oomycetes attracts considerable attention from outside the community as well as within. The OMGN annual meeting alternates between Asilomar, CA, and another venue, usually outside of the USA. This year, the meeting returns to China, and we are delighted to welcome you to the Ramada Plaza Taian. The 2018 meeting will cover some of the latest research on Oomycete Genomics, Evolution, Population Biology, Host Interactions, and Effector Biology. We look forward to an engaging and dynamic meeting! • 2 • Oomycete Molecular Genetics Network Meeting 2018 ORGANIZERS Scientific Program: Xiuguo Zhang (Department of Plant Pathology, Shandong Agricultural University, Tai'an, Shandong, China) Chunyuan Zhu (College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China) Meeting Logistics: Joel Shuman (Virginia Tech, Blacksburg, VA, USA) Shi Wang (Shandong Agricultural University) Cancan Yang (Shandong Agricultural University) INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE Co-chairs: Francine Govers (Wageningen University, Wageningen, Netherlands) John McDowell (Virginia Tech, Blacksburg, VA, USA) Members: Brett M. Tyler (Oregon State University, Corvallis, OR, USA) Sophien Kamoun (The Sainsbury Laboratory, Norwich, UK) Laura Grenville-Briggs Didymus (Swedish University of Agricultural Sciences, Alnarp, Sweden) Erica M. Goss (University of Florida, Gainesville, FL, USA) ACKNOWLEDGEMENTS This meeting is supported by Shandong Agricultural University. The project “Earmarked fund” was supported by China Agriculture Research System(CARS-25-03B) with Dr. Du as program leader. Table of contents • 3 • TABLE OF CONTENTS AT-A-GLANCE PROGRAM ……………………………………………………………………4 ABSTRACTS OF ORAL PRESENTATIONS ……………………………………………………………………9 ABSTRACTS OF POSTER PRESENTATIONS ……………………………………………………………………58 PARTICIPANTS ………………………………………………………………… 87 • 4 • AT-A-Glance program AT-A-GLANCE PROGRAM Oral presentations are in Grand Ballroom. Reception/Poster sessions are outside the Grand Ballroom. All meals are in Ramada Plaza Taian. Monday April 9th 8:30 - 9:00 Registration 9:00 - 9:05 Welcome Chair: 9:05 - 10:25 Oomycete biology, populations, and evolution I Audrey Ah-Fong and Kai Tao Cellular signaling and cytoskeleton dynamics 9:05 - 9:20 Francine Govers in Phytophthora Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into 9:25 - 9:40 Theerapong Krajaejun clinical identification, pathogenicity, and evolution of metabolism-related traits Mating type change in Phytophthora infestans 9:45 - 10:00 Li-Yun Guo regulated by histone deacetylases Ecology and evolution of oomycete communities in 10:05 - 10:20 Zachary Noel response to soybean seed treatments 10:25 - 11:00 Group photo and break Chair: 11:00-12:20 Keynote Speech Francine Govers Exploring fungal DNA Virus to control crop 11:00 - 11:35 Daohong Jiang diseases, challenge and opportunity 11:40 - 12:15 Omics in Plant Breeding Sanwen Huang 12:20 - 2:00 Lunch Chair: 2:00 - 3:40 Effectors I Petra Boevink and Kelsey Wood 2:00 - 2:15 Dissecting the transcriptional plasticity of P. sojae Brett Tyler Identification of Plasmopara viticola candidate 2:20 - 2:35 RXLR effector repertoire in Nicotiana Jiang Lu benthamiana 2:40 - 2:55 How are effectors secreted and delivered to the host? Shumei Wang 3:00 - 3:15 Plant recognition of Phytophthora GH12 MAMPs Yan Wang Characteristics of RxLR effector structures in 3:20 - 3:35 Li Zhao oomycete pathogens AT-A-Glance program • 5 • 3:40 - 4:10 Break Chair: 4:10 - 6:10 Genomics I Paul Birch and Diya Sen Towards the identification of effectors and secondary metabolites involved in oomycete-oomycete 4:10 - 4:25 Laura Grenville-Briggs interactions and mycoparasitism using comparative genomics Comparative genomics of four species of 4:30 - 4:45 Kyle Fletcher Peronosclerospora What role does Phytophthora kernoviae play in New 4:50 - 5:05 Rebecca McDougal Zealand forests? Land-use affects the growth and gene expression of 5:10 - 5:25 Preeti Panda Phytophthora agathidicida Transcriptional regulation of Phytophthora sojae 5:30 - 5:45 Wenwu Ye effectors for successful infection Genome sequence of Plasmopara viticola reveals 5:50 - 6:05 Ling Yin effector repertoire and pathogenicity mechanisms 6:10 - 7:30 Dinner 7:30 - 10:00 Reception/Poster session Tuesday April 10th 9:00 – 5:00 Excursion/free time 6:00 - 7:30 Conference Dinner Wednesday April 11th Chair: Jun Zhao 8:30 - 9:50 Host Interactions and Resistance Mechanisms I and Veronica Ancona Phytophthora palmivora establishes tissue-specific 8:30 - 8:45 intracellular infection structures in the earliest Sebastian Schornack divergent land plant lineage 8:50 - 9:05 A pathogen suppressor of an NLR immune network Lida Derevnina A plant pathogen effector utilizes host susceptibility 9:10 - 9:25 factor NRL1 to degrade the immune regulator Qin He SWAP70 A potato STRUBBELIG-RECEPTOR FAMILY gene 9:30 - 9:45 Haixia Wang StLRPK1 involves in plant immunity by association • 6 • AT-A-Glance program with StSERK3/BAK1 9:50 – 10:20 Break Chair: 10:20-12:00 Effectors II Suomeng Dong and Lida Derevnina Phytophthora infestans RXLR Effector Pi22926 10:20 - 10:35 suppresses plant immunity by targeting the host Zhendong Tian MAP3β to manipulate MAP3K signalling pathway Biochemical basis of an RXLR-WY effector 10:40 - 10:55 Jessica Upson suppression of an NLR network Characterization of host-recognized WY domain 11:00 - 11:15 effectors from Bremia lactucae that lack the Kelsey Wood canonical RxLR motif Functional analysis of an effector PcRxLR101 in 11:20 - 11:35 Jing Li Phytophthora capsici A potato chloroplast kinase is required for Rpi-vnt1 11:40 - 11:55 Chuyun Gao mediated immunity against late blight pathogen 12:00 - 2:00 Lunch Chair: Daolong Dou 2:00-3:20 Oomycete biology, populations, and evolution II and Theerapong Krajaejun Molecular genetics of the oomycete pathogen of 2:00 - 2:15 Lin Zhang lettuce, Bremia lactucae. Structure determination of three enzymes from 2:20 - 2:35 Weiwei Song Phytophthora capsici 2:40 - 2:55 Profiling of the Phytophthora epigenomes Han Chen Immunity triggered by the small cysteine rich effector 3:00 - 3:15 PC2 from Phytophthora infestans requires Shuaishuai Wang proteolytic cleavage by the host protease P69B 3:20 - 3:50 Break AT-A-Glance program • 7 • Chair: 3:50-5:30 Genomics II Sucheta Tripathy and Wenwu Ye New insights into pathogenicity of the emerging 3:50 - 4:05 Diya Sen tropical pathogen: Phytophthora colocasiae on taro Mutations in oxysterol binding protein-related protein conferring oxathiapiprolin resistance confirmed 4:10 - 4:25 Jianqiang Miao using CRISPR/Cas9 in Phytophthora capsici and P. sojae Detection of multiple oomycetes in metagenomic data Maria Fernanda 4:30 - 4:45 by using E-probe Detection of Nucleic Analysis Proano (EDNA) EumicrobeDBLiteV11: a lightweight genomic 4:50 - 5:05 resource and analytic platform for draft oomycete Arijit Panda genomes Diploid genome assembly works better when Pacbio 5:10 - 5:25 long reads are supplemented with Illumina reads: P. Mathu Malar C ramorum assembly a case study 5:30 - 6:20 Committee meeting 6:30 - 7:30 Dinner 7:30 - 10:00 Reception/Poster session Thursday April 12th Chair: 8:30 - 9:50 Host Interactions and Resistance Mechanisms II Rebecca McDougal and Qin He Synergistic anti-oomycete effect of melatonin with a 8:30 - 8:45 biofungicide against oomycetic blank shank Maozhi Ren disease Phytophthora utilizes an RxLR effector to hijack the 8:50 - 9:05 Maofeng Jing host ER stress as part of their infection strategy A conserved host target of oomycete Avr3a family 9:10 - 9:25 effectors positively regulates plant resistance to Ruirui Feng Phytophthora NbMORF8 encoding protein localized in 9:30 - 9:45 mitochondria and chloroplasts negatively regulates Yang Yang plant immunity to Phytophthora pathogens 9:50 – 10:20 Break • 8 • AT-A-Glance program Chair: 10:20 - 11:40 Effectors III Jiang Lu and Biao Gu The evolutionarily conserved Phytophthora effector 10:20 - 10:35 RxLR24 interferes with the secretion of Iga Tomczynska antimicrobial compounds Structure and function analysis of effector 10:40 - 10:55 Liying Wang PcRxLR145 of Phytophthora capsici The Phytophthora sojae essential effector Avh238 11:00 - 11:15 targets soybean GmACSs to suppress ethylene Bo Yang biosynthesis and promote infection Host mRNA methylation pathway, a new target for 11:20 - 11:35 Jie Huang Phytophthora effector proteins? 11:40 -12:00 Closing remarks 12:00 -2:00 Lunch/Adjourn Abstracts of oral presentations • 9 • ABSTRACTS OF ORAL PRESENTATIONS (in order of appearance) Monday April 9th Chair: 9:05 - 10:25 Oomycete biology, populations, and evolution I Audrey Ah-Fong and Kai Tao Cellular signaling and cytoskeleton dynamics in 9:05 - 9:20 Francine Govers Phytophthora Biochemical and Genetic
Recommended publications
  • Presidio Phytophthora Management Recommendations
    2016 Presidio Phytophthora Management Recommendations Laura Sims Presidio Phytophthora Management Recommendations (modified) Author: Laura Sims Other Contributing Authors: Christa Conforti, Tom Gordon, Nina Larssen, and Meghan Steinharter Photograph Credits: Laura Sims, Janet Klein, Richard Cobb, Everett Hansen, Thomas Jung, Thomas Cech, and Amelie Rak Editors and Additional Contributors: Christa Conforti, Alison Forrestel, Alisa Shor, Lew Stringer, Sharon Farrell, Teri Thomas, John Doyle, and Kara Mirmelstein Acknowledgements: Thanks first to Matteo Garbelotto and the University of California, Berkeley Forest Pathology and Mycology Lab for providing a ‘forest pathology home’. Many thanks to the members of the Phytophthora huddle group for useful suggestions and feedback. Many thanks to the members of the Working Group for Phytophthoras in Native Habitats for insight into the issues of Phytophthora. Many thanks to Jennifer Parke, Ted Swiecki, Kathy Kosta, Cheryl Blomquist, Susan Frankel, and M. Garbelotto for guidance. I would like to acknowledge the BMP documents on Phytophthora that proceeded this one: the Nursery Industry Best Management Practices for Phytophthora ramorum to prevent the introduction or establishment in California nursery operations, and The Safe Procurement and Production Manual. 1 Title Page: Authors and Acknowledgements Table of Contents Page Title Page 1 Table of Contents 2 Executive Summary 5 Introduction to the Phytophthora Issue 7 Phytophthora Issues Around the World 7 Phytophthora Issues in California 11 Phytophthora
    [Show full text]
  • Soil- and Waterborne Phytophthora Species Linked to Recent
    REVIEW ARTICLE Soil- and waterborne Phytophthora species linked to recent outbreaks in Northern California restoration sites A review identifies several Phytophthora species found in California wildlands and discusses approaches for preventing and diagnosing the spread of these plant pathogens. by Matteo Garbelotto, Susan J. Frankel and Bruno Scanu istorically, the release of Phytophthora species Abstract in the wild has resulted in massive die-offs of Himportant native plant species, with cascading Many studies around the globe have identified plant production facilities consequences on the health and productivity of affected as major sources of plant pathogens that may be released in the wild, ecosystems (Brasier et al. 2004; Hansen 2000; Jung with significant consequences for the health and integrity of natural 2009; Lowe 2000; Rizzo and Garbelotto 2003; Swiecki ecosystems. Recently, a large number of soilborne and waterborne et al. 2003; Weste and Marks 1987). Once introduced, species belonging to the plant pathogenic genus Phytophthora have plant pathogens in general cannot be eradicated (Cun- been identified for the first time in California native plant production niffe et al. 2016; Garbelotto 2008), and costs associated facilities, including those focused on the production of plant stock used with the spread and control of exotic pathogens and in ecological restoration efforts. Additionally, the same Phytophthora pests have been estimated to surpass $100 billion per species present in production facilities have often been identified in failing year for the United States alone (Pimentel et al. 2005). restoration projects, further endangering plant species already threatened Thus, preventing the introduction of pathogens by us- or endangered. To our knowledge, the identification of Phytophthora ing pathogen-free plant stock is the most cost-effective species in restoration areas and in plant production facilities that produce and responsible approach (Parnell et al.
    [Show full text]
  • Genotypic Diversity of Common Phytophthora Species in Maryland Nurseries and Characterization of Fungicide Efficacy
    ABSTRACT Title of Document: GENOTYPIC DIVERSITY OF COMMON PHYTOPHTHORA SPECIES IN MARYLAND NURSERIES AND CHARACTERIZATION OF FUNGICIDE EFFICACY Justine R. Beaulieu, Master of Science, 2015 Directed By: Assistant Professor, Dr. Yilmaz Balci, Department of Plant Science and Landscape Architecture The genetic diversity of P. plurivora, P. cinnamomi, P. pini, P. multivora, and P. citrophthora, five of the most common species found in Maryland ornamental nurseries and mid-Atlantic forests, was characterized using amplified fragment length polymorphism (AFLP). Representative isolates of genotypic clusters were then screened against five fungicides commonly used to manage Phytophthora. Three to six populations were identified for each species investigated with P. plurivora being the most diverse and P. cinnamomi the least. Clonal groups that originated from forest or different nurseries suggest an ongoing pathway of introduction. In addition, significant molecular variation existed for some species among nurseries an indication that unique genotypes being present in different nurseries. Insensitive isolates to fungicides were detected with P. plurivora (13), P. cinnamomi (3), and P. multivora (2). Interestingly, insensitive isolates primarily belonged to the least common genotypic clusters. Because all but two isolates were sensitive to dimethomorph and ametoctradin, the ability of these chemicals to manage Phytophthora is promising. Nevertheless, the presence of two insensitive isolates could portend general insensitivity to these chemicals
    [Show full text]
  • Phytophthora Damping Off and Root Rot of Soybean Anne E
    FACT SHEET Agriculture and Natural Resources AC-17-09 Phytophthora Damping Off and Root Rot of Soybean Anne E. Dorrance and Dennis Mills Department of Plant Pathology The Ohio State University hytophthora damping off and root rot have been increased use of no-tillage and reduced tillage residue Pthe most destructive diseases of soybeans in Ohio management systems, however, Phytophthora damp- for more than 50 years. When rainfall saturates fields ing off and root rot has become a serious problem in soon after planting, severe seedling kill can result other areas of Ohio as well. The soil-borne pathogen in yield losses greater than 50% in individual fields. that causes this disease (Phytophthora sojae) can be Phytophthora seed rot and pre-emergence damping found in most agricultural soils in the state. off are one of the major causes of replanting on heavy soils. Historically, statewide yield losses average 11% Symptoms in years with wet springs and 8% in years with more Phytophthora normal planting seasons. can attack soy- The disease is most severe in poorly drained soils bean plants at any with high clay content. Traditionally, the northwest stage of develop- section of the state has had severe problems with ment. Symptoms Phytophthora damping off and root rot. With the in young plants include rapid yel- lowing and wilt- ing accompanied by a soft rot and collapse of the root. More ma- ture plants gener- ally show reduced vigor and may be gradually killed as the growing Figure 2. Phytophthora stem season progresses. rot—adult plant showing stem Figure 1.
    [Show full text]
  • Phytophthora Plurivora T. Jung & T. I. Burgess and Other Phytophthora Species Causing Important Diseases of Ericaceous Plant
    Plant Protect. Sci. Vol. 47, 2011, No. 1: 13–19 Phytophthora plurivora T. Jung & T. I. Burgess and other Phytophthora Species Causing Important Diseases of Ericaceous Plants in the Czech Republic Marcela MRÁZKOVÁ1, Karel ČERNÝ1, Michal TOMšovsKÝ 2 and Veronika STRNADOVÁ1 1Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Průhonice, Czech Republic; 2Mendel University in Brno, Brno, Czech Republic Abstract Mrázková M., Černý K., Tomšovský M., Strnadová V. (2011): Phytophthora plurivora T. Jung & T. I. Burgess and other Phytophthora species causing important diseases of ericaceous plants in the Czech Republic. Plant Protect. Sci., 47: 13–19. Ornamental nurseries, garden centres, public gardens and urban greenery in the Czech Republic were surveyed in 2006–2009 for the presence of Phytophthora spp. and the diseases they cause on ericaceous plants. Diseased plants such as Rhododendron spp., Pieris floribunda, Vaccinium sp., and Azalea sp. showed various symptoms including leaf spot, shoot blight, twig lesions or stem, root and collar rot. Nearly 140 Phytophthora isolates were collected from symptomatic plants in different areas of the country. Of the Phytophthora spp. on ericaceous plants or in their surroundings, P. plurivora appeared to be the most common species. Herein, we focus on the most frequently occurring species, P. plurivora, and describe its morpho-physiological and pathogenicity features and confirm its identity based on ITS sequences of rDNA. In addition, we give a list of other Phytophthora spp. including P. cactorum, P. cambivora, P. cinnamomi, P. citrophthora, P. megasperma, P. multivora, P. ramorum, and P. gonapodyides that we identified on the basis of their cultural and morphological characteristics and DNA sequences.
    [Show full text]
  • Re-Evaluation of Phytophthora Citricola Isolates from Multiple Woody Hosts in Europe and North America Reveals a New Species, Phytophthora Plurivora Sp
    Persoonia 22, 2009: 95–110 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158509X442612 Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. T. Jung1,2, T.I. Burgess1 Key words Abstract During large-scale surveys for soilborne Phytophthora species in forests and semi-natural stands and nurseries in Europe during the last decade, homothallic Phytophthora isolates with paragynous antheridia, semi- beech papillate persistent sporangia and a growth optimum around 25 °C which did not form catenulate hyphal swellings, citricola were recovered from 39 host species in 16 families. Based on their morphological and physiological characters and decline the similarity of their ITS DNA sequences with P. citricola as designated on GenBank, these isolates were routinely dieback identified as P. citricola. In this study DNA sequence data from the internal transcribed spacer regions (ITS1 and forest ITS2) and 5.8S gene of the rRNA operon, the mitochondrial cox1 and -tubulin genes were used in combination with multivora β morphological and physiological characteristics to characterise these isolates and compare them to the ex-type and nursery the authentic type isolates of P. citricola, and two other taxa of the P. citricola complex, P. citricola I and the recently oak described P. multivora. Due to their unique combination of morphological, physiological and molecular characters phylogeny these semipapillate homothallic isolates are described here as a new species, P. plurivora sp. nov. Article info Received: 5 February 2009; Accepted: 26 March 2009; Published: 14 April 2009. INTRODUCTION dieback, respectively (Fig.
    [Show full text]
  • Comparative Genomics Reveals Insight Into Virulence Strategies of Plant Pathogenic Oomycetes
    Comparative Genomics Reveals Insight into Virulence Strategies of Plant Pathogenic Oomycetes Bishwo N. Adhikari1, John P. Hamilton1, Marcelo M. Zerillo2, Ned Tisserat2, C. Andre´ Le´vesque3,C. Robin Buell1* 1 Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America, 2 Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado, United States of America, 3 Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada and Department of Biology, Carleton University, Ottawa, Ontario, Canada Abstract The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over- representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H.
    [Show full text]
  • Review Ten Things to Know About Oomycete Effectors
    MOLECULAR PLANT PATHOLOGY (2009) 10(6), 795–803 DOI: 10.1111/J.1364-3703.2009.00593.X Review Ten things to know about oomycete effectors SEBASTIAN SCHORNACK1, EDGAR HUITEMA1, LILIANA M. CANO1, TOLGA O. BOZKURT1, RICARDO OLIVA1, MIREILLE VAN DAMME1, SIMON SCHWIZER1, SYLVAIN RAFFAELE1, ANGELA CHAPARRO-GARCIA1, RHYS FARRER1, MARIA EUGENIA SEGRETIN1, JORUNN BOS1, BRIAN J. HAAS2, MICHAEL C. ZODY2, CHAD NUSBAUM2, JOE WIN1, MARCO THINES1,3 AND SOPHIEN KAMOUN1,* 1The Sainsbury Laboratory, Norwich, NR4 7UH, UK 2Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA 3University of Hohenheim, Institute of Botany 210, 70593 Stuttgart, Germany sity of Wales, Bangor, UK, summed up the general feeling by SUMMARY declaring the oomycetes to be a ‘fungal geneticist’s nightmare’ Long considered intractable organisms by fungal genetic (Shaw, 1983). research standards, the oomycetes have recently moved to the In 1984, 1 year after David Shaw’s gloomy quip, Brian centre stage of research on plant–microbe interactions. Recent Staskawicz, Doug Dahlbeck and Noel Keen reported the first work on oomycete effector evolution, trafficking and function cloning of a plant pathogen avirulence gene from the bacterium has led to major conceptual advances in the science of plant Pseudomonas syringae pv. glycinea (Staskawicz et al., 1984). pathology. In this review, we provide a historical perspective on This landmark event ushered in a golden age for research into oomycete genetic research and summarize the state of the art in plant–microbe interactions during which bacteria and a handful effector biology of plant pathogenic oomycetes by describing of fungi became the organisms of choice for molecular studies what we consider to be the 10 most important concepts about on host specificity and disease resistance (see other reviews in oomycete effectors.mpp_593 795..804 this issue).
    [Show full text]
  • The Taxonomy and Biology of Phytophthora and Pythium
    Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry.
    [Show full text]
  • Human Pythiosis, Brazil
    septate or nonseptate hyphae, often identified as fungal ele- Human Pythiosis, ments of the zygomycetes (6). Conventional diagnosis is based mainly on immunofluorecence and immunoperoxi- Brazil dase procedures, which have proved specific in tissues of persons, cats and dogs with pythiosis. Serologic tests, such Sandra de Moraes Gimenes Bosco,* as enzyme-linked immunosorbent assay (ELISA) and Eduardo Bagagli,* João Pessoa Araújo Jr.,* immunodiffusion, have been also used to diagnose pythio- João Manuel Grisi Candeias,* sis (7). Molecular diagnostic assays, such as nested poly- Marcello Fabiano de Franco,† merase chain reaction and a species-specific DNA probe Mariangela Esther Alencar Marques,* from the ribosomal DNA complex, have been useful to Leonel Mendoza,‡ identify P. insidiosum in the absence of culture (8,9). This Rosangela Pires de Camargo,* article reports the first case of human pythiosis in continen- and Silvio Alencar Marques* tal Latin America in a patient from Brazil, and diagnosis Pythiosis, caused by Pythium insidiosum, occurs in was confirmed by molecular taxonomy. humans and animals and is acquired from aquatic environ- ments that harbor the emerging pathogen. Diagnosis is dif- The Study ficult because clinical and histopathologic features are not A 49-year-old policeman was admitted on May 2002 to pathognomonic. We report the first human case of pythio- the dermatology division of the university hospital for the sis from Brazil, diagnosed by using culture and rDNA treatment of a skin lesion on his leg, initially diagnosed as sequencing. cutaneous zygomycosis. The patient stated that a small pustule developed on his left leg 3 months earlier, 1 week ythiosis is a cutaneous-subcutaneous disease of human after he fished in a lake with standing water.
    [Show full text]
  • Identification of Phytophthora Species Baited and Isolated from Forest Soil and Streams in Northwestern Yunnan Province, China
    For. Path. 43 (2013) 87–103 doi: 10.1111/efp.12015 © 2013 Blackwell Verlag GmbH REVIEW ARTICLE Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan province, China By W.-x. Huai1, G. Tian1, E. M. Hansen2, W.-x. Zhao1,5, E. M. Goheen3,N.J.Grunwald€ 4 and C. Cheng1 1Research Institute of Forest Ecology, Environment and Protection, The Key Laboratory of State Forestry Administration on Forest Protection, Chinese Academy of Forestry, Beijing, 100091, China; 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR USA; 3USDA Forest Service, Forest Health Protection, Central Point, OR USA; 4USDA Agricultural Research Service, Corvallis, OR USA; 5E-mail: [email protected] (for correspondence) Summary Phytophthora species were surveyed by collecting soil samples and placing bait leaves in selected streams during June–October in the years 2005, 2006 and 2010 at three sites in oak forests in Diqing Tibetan Autonomous Prefecture of NW Yunnan province, China. Seventy-three isolates of Phytophthora spp. were recovered from 135 baited leaf samples and 81 soil samples. Eight Phytophthora species were identified by observation of morphological features and ITS1-5.8S-ITS2 rDNA sequence analysis. The eight taxa included two well-known species P. gonapodyides and P. cryptogea, two recently described species P. gregata and P. plurivora, two named but as yet undescribed taxa, P. taxon PgChlamydo and P. taxon Salixsoil, and two previously unrecognized species, Phytophthora sp.1 and P. sp.2. The most numerous species, P. taxon PgChlamydo, and the second most abundant species, P. taxon Salixsoil, were recovered at all three sites.
    [Show full text]
  • Pythium Insidiosum
    SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH IN VITRO ANTIMICROBIAL ACTIVITY OF VOLATILE ORGANIC COMPOUNDS FROM MUSCODOR CRISPANS AGAINST THE PATHOGENIC OOMYCETE PYTHIUM INSIDIOSUM Theerapong Krajaejun1, Tassanee Lowhnoo2, Wanta Yingyong2, Thidarat Rujirawat2, Suthat Fucharoen3 and Gary A Strobel4 1Department of Pathology, 2Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok; 3Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; 4Department of Plant Sciences, Montana State University, Bozeman, MT, USA Abstract. Pythium insidiosum is an oomycete capable of causing a life-threatening disease in humans, called pythiosis. Conventional antifungal drugs are ineffec- tive against P. insidiosum infection. A synthetic mixture of the volatile organic compounds (VOCs) from the endophytic fungus Muscodor crispans strain B23 demonstrates antimicrobial effects against a broad range of human and plant pathogens, including fungi, bacteria, and oomycetes. We studied the in vitro ef- fects of B23 VOCs against 25 human, 1 animal, and 4 environmental isolates of P. insidiosum, compared with a no-drug control. The B23 synthetic mixture, at amounts as low as 2.5 µl, significantly reduced growth of allP. insidiosum isolates by at least 80%. The inhibitory effect of the B23 VOCs was dose-dependent. The growth of all isolates was completely inhibited by a dose of 10.0 µl of B23 VOCs, and all isolates were killed by a dose of 20.0 µl. Synthetic B23 VOCs of M. crispans had inhibitory and lethal effects against all P. insidiosum isolates tested. Further studies are needed to evaluate this mixture for treatment of pythiosis. Keywords: pythiosis, Pythium insidiosum, oomycete, in vitro susceptibility, Mus- codor crispans, endophytic fungus INTRODUCTION oomycete Pythium insidiosum (Mendoza et al, 1996).
    [Show full text]