The Astrophysical Journal Supplement Series, 234:15 (13pp), 2018 January https://doi.org/10.3847/1538-4365/aa9f28 © 2018. The American Astronomical Society. All rights reserved. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4) Cheng Zhu1,2, Andrew M. Turner1,2, Matthew J. Abplanalp1,2, and Ralf I. Kaiser1,2 1 Department of Chemistry, University of Hawaii at Mânoa, Honolulu, HI 96822, USA;
[email protected] 2 W.M. Keck Laboratory in Astrochemistry, University of Hawaii at Mânoa, Honolulu, HI 96822, USA Received 2017 October 10; revised 2017 November 13; accepted 2017 November 30; published 2018 January 16 Abstract This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91±14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18±3eV).