Lecture 26 (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 26 (PDF) Lecture 26 Magnetic Domains Today 1. Formation of magnetic domains. 2. Domain walls. 3. Domain wall motion: relation to hysteresis. Questions you should be able to answer by the end of today’s lecture 1. What is the reason for formation of magnetic domains? 2. What energies contribute to the domain wall structure? 3. How does domain wall thickness relate to the magnetic anisotropy constant and exchange integral? 4. What is the nature of hysteresis in multi-domain ferromagnetic materials? 5. What is the difference between soft and hard magnetic materials? Which material would you use for the hard drive? And for a power generator? 1 If all ferromagnets consisted of individual magnetic domains magnetized to saturation along one of the easy axes, then any iron rod would act like a permanent magnet. This obviously does not happen in nature. Why not? Consider a ferromagnet that is magnetized to saturation along one of the easy axis. In this case the edges of the ferromagnet generate a demagnetizing field (the field of the magnetic dipole). In order to minimize the magnetostatic energy Ed Hd M the material breaks into the “magnetic domains”. These domains are not necessarily aligned with grain boundaries: many domains can exist within one large grain, and several small grain can belong to the same magnetic domain. Illustration bellow shows how formation of domains yields to zero net magnetization (b), (c) in the absence of external magnetic field. In this case each domain is magnetized to saturation in the direction of one of the easy axes, but the sum of the domain magnetization is zero. )LJXUHUHPRYHGGXHWRFRS\ULJKWUHVWULFWLRQV2¶+DQGOH\5REHUW& 0RGHUQM DJQHWLF0DWHULDOV:LOH\ When external field is applied to the multi-domain ferromagnet, saturation magnetization can be achieved through the domain wall motion, which is energetically inexpensive, rather than through magnetization rotation, which carries large anisotropy energy penalty. 2 So what happens at the boundary between two magnetic domains? What are the domain walls? Domain walls are the boundaries between the regions (domains) in which all spins (or magnetic dipoles) are aligned in the direction of the easy axis. At the domain wall magnetic dipoles or spins have to reorient themselves. Does the reorientation of the spins happen instantaneously (within one lattice spacing) or does it take several lattice spacings? Recall that the energy associated with the positioning of two spins oriented in the opposite direction in each other’s proximity results in a large exchange energy penalty: 2 2 Eex 2J12S1 S2 2JS cos, Eex , Emax 2JS Consequently, it turns out to be advantageous to reorient the spins across multiple spacings. The walls can be classified as (a) Bloch walls – in these walls spins rotate within the plane of the wall, and (b) Neel walls – in these walls spins rotate in the plane perpendicular to the plane of the wall. )LJXUHUHPRYHGGXHWRFRS\ULJKWUHVWULFWLRQV %ORFKZDOODQG1Hpl ZDOO 2¶+DQGOH\5REHUW &0RGHUQ0DJQHWLF0DWHULDOV:LOH\ Wall width Let’s consider a simplest Bloch 180º domain wall (a), as we have mentioned above it is energetically cheaper to reorient spins over several lattice spacings. If we have a wall that is N lattice spacings wide, then the angle between the neighboring spins is: . N Then the corresponding exchange energy penalty is: 2 2 E E E0 2JS 2 cos 2JS2 2JS 2 JS 2 . ex ex ex 2 N 2 Then the total exchange energy penalty is a sum of the penalties between each pair of spins over 2 2 N lattice spacings: E total N JS 2 JS 2 . ex NN2 3 If a is the lattice constant, then the exchange energy penalty per unit area of the 180º Bloch wall is: E total 2 ex ex JS 2 BW a2 a2 N ex From this expression it looks like: N BW 0, i.e. it is energetically advantageous to have infinitely thick domain walls, which means that there will be no domains but just randomly oriented spins. This is obviously not the case in ferromagnets, and the reason for this is the magnetic anisotropy energy increases when spins are not oriented in the direction of the easy axis. This means that the domain w all width is determined by the balance betw een the exchange energy and the magnetic anisotropy. 2 Recall that the magnetic anisotropy energy is: Ea Ku sin , where is the angle between the magnetic dipole and the easy axis. Assuming that within the domains the spins are oriented along the easy axis and the neighboring domains are magnetized in opposite directions (180º wall) we can calculate the total anisotropy energy associated with the spins in the wall that is N lattice spacing wide. Replacing the sum by the integral and taking into account that , we find: N N total 2 1 2 1 1 NKu Ea Ku sin i Ku sin d Ku . i1 d 0 N 2 2 As anisotropy constant is per unit volume the total anisotropy energy density per unit area of the Bloch wall is: NK a3 NK a total u u a 2a2 2 Bringing together the contributions of the exchange energy and the magnetic anisotropy energy, we find the energy density associated with a unit area of the Bloch wall is: 2 NK a ex a JS 2 u BW BW BW a2 N 2 Now all we need to do in order to find the wall width is to find the number of lattice spacings N that minimizes the energy density of the wall: 2 2 d BW JS Kua 2J 2 2 N S 3 dN N a 2 Kua 2J J Then the wall width is: Na S K Kua u Larger exchange integral yields wider walls and higher anisotropy yields thinner walls. 4 If the piece of the ma terial were smaller than the size of the domain wall, then this piece would consist of one single domain. It is true, for example, for some nanoparticles. The total energy per unit area of the wall is: 2JK S u BW a Both exchange and anisotropy contribute to the energy penalty of a wall formation. Magnetization curve of the multi-domain ferromagnet. In the previous lecture we have derived the hysteresis loop for the single-domain ferromagnet. We have found that in the direction of the easy axis the hysteresis loop has a perfect rectangular shape and the coercive field is determined by the anisotropy and the saturation magnetization. )LJXUHUHPRYHGGXHWRFRS\ULJKWUHVWULFWLRQV )LJ2'+DQGOH\ 5REHUW&Modern The magnetic fields required to magnetize the individual Magnetic Materials. Wiley, 1999. domains to saturation are small in ferromagnets and consequently it is reasonable to assume that in zero applied field individual domains are fully magnetized but the net magnetization of the entire specimen is zero. When external magnetic field is applied the domains that are oriented in the direction of the field start to grow at the expense of the other domains. This is achieved by the domain wall motion, which is energetically cheap process (bottom illustration). If applied magnetic field is sufficiently large it will eventually overcome the anisotropy energy and domain Figure removed due to copyright restrictions. magnetization will be reoriented in the direction of the easy Increasing magnetic field: O’Handley, Robert axis closest to the direction of the applied field. C. Modern Magnetic Materials. Wiley, 1999. If the anisotropy energy is high, which yields high coercive field, then it will be difficult to move the domain walls as well as change the direction of the domain magnetization. Consequently it will be difficult to magnetize material to saturation and it will also be difficult to demagnetize it back to zero magnetization. In addition coercive field can be increased by pinning of the domain walls. Defects, built-in strains, impurities impede the domain wall motion and hence contribute to coercivity. High coercivity yields large area of the hysteresis loop. The area of the hysteresis loop is the energy dissipated during magnetization – demagnetization - reverse magnetization 5 cycle. Soft and hard magnetic materials: Courtesy of Wayne Storr. Used with permission. 1. Magnetically soft materials: Low anisotropy => wide domain walls 7 Low coercivity (e.g. permalloy Ni/Fe Bc ~210 T) Small area hysteresis loop Large saturation magnetization These materials are easy to magnetize and demagnetize. They are used in applications where magnetization direction has to be frequently flipped, i.e. devices that run in AC mode. For example transformers, generators and motors have soft magnetic cores. 2. Magnetically hard materials High anisotropy => narrow domain walls High coercivity (e.g. Nd2Fe14B Bc ~ 1.2T) Large area hysteresis loop Large saturation magnetization These materials are very difficult to magnetize and demagnetize, hence they can be used for information storage since they won’t demagnetize spontaneously. Hard magnetic materials are use in hard drives, where 1 bit of information is actually 1 domain magnetized to saturation or demagnetized to zero, the bits are generally referred to as per square inch. Modern hard drives are within Tbit/in2. 6 MIT OpenCourseWare http://ocw.mit.edu 3.024 Electronic, Optical and Magnetic Properties of Materials Spring 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms..
Recommended publications
  • Chiral Transport Along Magnetic Domain Walls in the Quantum Anomalous Hall Effect
    www.nature.com/npjquantmats ARTICLE OPEN Chiral transport along magnetic domain walls in the quantum anomalous Hall effect Ilan T. Rosen1,2, Eli J. Fox3,2, Xufeng Kou 4,5, Lei Pan4, Kang L. Wang4 and David Goldhaber-Gordon3,2 The quantum anomalous Hall effect in thin film magnetic topological insulators (MTIs) is characterized by chiral, one-dimensional conduction along the film edges when the sample is uniformly magnetized. This has been experimentally confirmed by measurements of quantized Hall resistance and near-vanishing longitudinal resistivity in magnetically doped (Bi,Sb)2Te3. Similar chiral conduction is expected along magnetic domain walls, but clear detection of these modes in MTIs has proven challenging. Here, we intentionally create a magnetic domain wall in an MTI, and study electrical transport along the domain wall. In agreement with theoretical predictions, we observe chiral transport along a domain wall. We present further evidence that two modes equilibrate while co-propagating along the length of the domain wall. npj Quantum Materials (2017) 2:69 ; doi:10.1038/s41535-017-0073-0 2 2 INTRODUCTION QAH effect, ρyx transitions from ∓ h/e to ±h/e over a substantial The recent prediction1 and subsequent discovery2 of the quantum range of field (H = 150 to H = 200 mT for the material used in the 15–20 anomalous Hall (QAH) effect in thin films of the three-dimensional work), and ρxx has a maximum in this field range. Hysteresis μ magnetic topological insulator (MTI) (CryBixSb1−x−y)2Te3 has loops of the four-terminal resistances of a 50 m wide Hall bar of opened new possibilities for chiral-edge-state-based devices in MTI film are shown in Fig.
    [Show full text]
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Mean Field Theory of Phase Transitions 1
    Contents Contents i List of Tables iii List of Figures iii 7 Mean Field Theory of Phase Transitions 1 7.1 References .............................................. 1 7.2 The van der Waals system ..................................... 2 7.2.1 Equationofstate ...................................... 2 7.2.2 Analytic form of the coexistence curve near the critical point ............ 5 7.2.3 History of the van der Waals equation ......................... 8 7.3 Fluids, Magnets, and the Ising Model .............................. 10 7.3.1 Lattice gas description of a fluid ............................. 10 7.3.2 Phase diagrams and critical exponents ......................... 12 7.3.3 Gibbs-Duhem relation for magnetic systems ...................... 13 7.3.4 Order-disorder transitions ................................ 14 7.4 MeanField Theory ......................................... 16 7.4.1 h = 0 ............................................ 17 7.4.2 Specific heat ........................................ 18 7.4.3 h = 0 ............................................ 19 6 7.4.4 Magnetization dynamics ................................. 21 i ii CONTENTS 7.4.5 Beyond nearest neighbors ................................ 24 7.4.6 Ising model with long-ranged forces .......................... 25 7.5 Variational Density Matrix Method ................................ 26 7.5.1 The variational principle ................................. 26 7.5.2 Variational density matrix for the Ising model ..................... 27 7.5.3 Mean Field Theoryof the PottsModel ........................
    [Show full text]
  • Thermal Fluctuations of Magnetic Nanoparticles: Fifty Years After Brown1)
    THERMAL FLUCTUATIONS OF MAGNETIC NANOPARTICLES: FIFTY YEARS AFTER BROWN1) William T. Coffeya and Yuri P. Kalmykovb a Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland b Laboratoire de Mathématiques et Physique (LAMPS), Université de Perpignan Via Domitia, 52, Avenue Paul Alduy, F-66860 Perpignan, France The reversal time (superparamagnetic relaxation time) of the magnetization of fine single domain ferromagnetic nanoparticles owing to thermal fluctuations plays a fundamental role in information storage, paleomagnetism, biotechnology, etc. Here a comprehensive tutorial-style review of the achievements of fifty years of development and generalizations of the seminal work of Brown [W.F. Brown, Jr., Phys. Rev., 130, 1677 (1963)] on thermal fluctuations of magnetic nanoparticles is presented. Analytical as well as numerical approaches to the estimation of the damping and temperature dependence of the reversal time based on Brown’s Fokker-Planck equation for the evolution of the magnetic moment orientations on the surface of the unit sphere are critically discussed while the most promising directions for future research are emphasized. I. INTRODUCTION A. THERMAL INSTABILITY OF MAGNETIZATION IN FINE PARTICLES B. KRAMERS ESCAPE RATE THEORY C. SUPERPARAMAGNETIC RELAXATION TIME: BROWN’S APPROACH II. BROWN’S CONTINUOUS DIFFUSION MODEL OF CLASSICAL SPINS A. BASIC EQUATIONS B. EVALUATION OF THE REVERSAL TIME OF THE MAGNETIZATION AND OTHER OBSERVABLES III. REVERSAL TIME IN SUPERPARAMAGNETS WITH AXIALLY-SYMMETRIC MAGNETOCRYSTALLINE ANISOTROPY A. FORMULATION OF THE PROBLEM B. ESTIMATION OF THE REVERSAL TIME VIA KRAMERS’ THEORY C. UNIAXIAL SUPERPARAMAGNET SUBJECTED TO A D.C. BIAS FIELD PARALLEL TO THE EASY AXIS IV. REVERSAL TIME OF THE MAGNETIZATION IN SUPERPARAMAGNETS WITH NONAXIALLY SYMMETRIC ANISOTROPY 1) Published in Applied Physics Reviews Section of the Journal of Applied Physics, 112, 121301 (2012).
    [Show full text]
  • Dynamics of a Ferromagnetic Domain Wall and the Barkhausen Effect
    VOLUME 79, NUMBER 23 PHYSICAL REVIEW LETTERS 8DECEMBER 1997 Dynamics of a Ferromagnetic Domain Wall and the Barkhausen Effect Pierre Cizeau,1 Stefano Zapperi,1 Gianfranco Durin,2 and H. Eugene Stanley1 1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 2Istituto Elettrotecnico Nazionale Galileo Ferraris and GNSM-INFM, Corso M. d'Azeglio 42, I-10125 Torino, Italy (Received 2 July 1997) We derive an equation of motion for the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium, and we study the associated depinning transition. The long-range dipolar interactions set the upper critical dimension to be dc ­ 3, so we suggest that mean-field exponents describe the Barkhausen effect for three-dimensional soft ferromagnetic materials. We analyze the scaling of the Barkhausen jumps as a function of the field driving rate and the intensity of the demagnetizing field, and find results in quantitative agreement with experiments on crystalline and amorphous soft ferromagnetic alloys. [S0031-9007(97)04766-2] PACS numbers: 75.60.Ej, 68.35.Ct, 75.60.Ch The magnetization of a ferromagnet displays discrete Here, we present an accurate treatment of magnetic in- jumps as the external magnetic field is increased. This teractions in the context of the depinning transition, which phenomenon, known as the Barkhausen effect, was first allows us to explain the experiments and to give a micro- observed in 1919 by recording the tickling noise produced scopic justification for the model of Ref. [13]. We study by the sudden reversal of the Weiss domains [1].
    [Show full text]
  • Dynamic Symmetry Loss of High-Frequency Hysteresis Loops in Single-Domain Particles with Uniaxial Anisotropy
    Journal of Magnetism and Magnetic Materials 324 (2012) 466–470 Contents lists available at SciVerse ScienceDirect Journal of Magnetism and Magnetic Materials journal homepage: www.elsevier.com/locate/jmmm Dynamic symmetry loss of high-frequency hysteresis loops in single-domain particles with uniaxial anisotropy Gabriel T. Landi Instituto de Fı´sica da Universidade de Sao~ Paulo, 05314-970 Sao~ Paulo, Brazil article info abstract Article history: Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic Received 2 June 2011 hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a Available online 23 August 2011 thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being Keywords: present in all real systems, these are seldom included in numerical studies. The notable exceptions are Single-domain particles the Ising systems, which have been extensively studied in the past, but describe only one of the many Langevin dynamics mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau– Magnetic hysteresis Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic–ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place.
    [Show full text]
  • Selecting the Optimal Inductor for Power Converter Applications
    Selecting the Optimal Inductor for Power Converter Applications BACKGROUND SDR Series Power Inductors Today’s electronic devices have become increasingly power hungry and are operating at SMD Non-shielded higher switching frequencies, starving for speed and shrinking in size as never before. Inductors are a fundamental element in the voltage regulator topology, and virtually every circuit that regulates power in automobiles, industrial and consumer electronics, SRN Series Power Inductors and DC-DC converters requires an inductor. Conventional inductor technology has SMD Semi-shielded been falling behind in meeting the high performance demand of these advanced electronic devices. As a result, Bourns has developed several inductor models with rated DC current up to 60 A to meet the challenges of the market. SRP Series Power Inductors SMD High Current, Shielded Especially given the myriad of choices for inductors currently available, properly selecting an inductor for a power converter is not always a simple task for designers of next-generation applications. Beginning with the basic physics behind inductor SRR Series Power Inductors operations, a designer must determine the ideal inductor based on radiation, current SMD Shielded rating, core material, core loss, temperature, and saturation current. This white paper will outline these considerations and provide examples that illustrate the role SRU Series Power Inductors each of these factors plays in choosing the best inductor for a circuit. The paper also SMD Shielded will describe the options available for various applications with special emphasis on new cutting edge inductor product trends from Bourns that offer advantages in performance, size, and ease of design modification.
    [Show full text]
  • Magnetic Force Microscopy of Superparamagnetic Nanoparticles
    Magnetic Force Microscopy of Superparamagnetic Nanoparticles for Biomedical Applications Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tanya M. Nocera, M.S. Graduate Program in Biomedical Engineering The Ohio State University 2013 Dissertation Committee: Gunjan Agarwal, PhD, Advisor Stephen Lee, PhD Jessica Winter, PhD Anil Pradhan, PhD Copyright by Tanya M. Nocera 2013 Abstract In recent years, both synthetic as well as naturally occurring superparamagnetic nanoparticles (SPNs) have become increasingly important in biomedicine. For instance, iron deposits in many pathological tissues are known to contain an accumulation of the superparamagnetic protein, ferritin. Additionally, man-made SPNs have found biomedical applications ranging from cell-tagging in vitro to contrast agents for in vivo diagnostic imaging. Despite the widespread use and occurrence of SPNs, detection and characterization of their magnetic properties, especially at the single-particle level and/or in biological samples, remains a challenge. Magnetic signals arising from SPNs can be complicated by factors such as spatial distribution, magnetic anisotropy, particle aggregation and magnetic dipolar interaction, thereby confounding their analysis. Techniques that can detect SPNs at the single particle level are therefore highly desirable. The goal of this thesis was to develop an analytical microscopy technique, namely magnetic force microscopy (MFM), to detect and spatially localize synthetic and natural SPNs for biomedical applications. We aimed to (1) increase ii MFM sensitivity to detect SPNs at the single-particle level and (2) quantify and spatially localize iron-ligated proteins (ferritin) in vitro and in biological samples using MFM.
    [Show full text]
  • Magnetic Switching of a Stoner-Wohlfarth Particle Subjected to a Perpendicular Bias Field
    electronics Article Magnetic Switching of a Stoner-Wohlfarth Particle Subjected to a Perpendicular Bias Field Dong Xue 1,* and Weiguang Ma 2 1 Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409-1051, USA 2 Department of Physics, Umeå University, 90187 Umeå, Sweden; [email protected] * Correspondence: [email protected]; Tel.: +1-806-834-4563 Received: 28 February 2019; Accepted: 21 March 2019; Published: 26 March 2019 Abstract: Characterized by uniaxial magnetic anisotropy, the Stoner-Wohlfarth particle experiences a change in magnetization leading to a switch in behavior when tuned by an externally applied field, which relates to the perpendicular bias component (hperp) that remains substantially small in comparison with the constant switching field (h0). The dynamics of the magnetic moment that governs the magnetic switching is studied numerically by solving the Landau-Lifshitz-Gilbert (LLG) equation using the Mathematica code without any physical approximations; the results are compared with the switching time obtained from the analytic method that intricately treats the non-trivial bias field as a perturbation. A good agreement regarding the magnetic switching time (ts) between the numerical calculation and the analytic results is found over a wide initial angle range (0.01 < q0 < 0.3), as h0 and hperp are 1.5 × K and 0.02 × K, where K represents the anisotropy constant. However, the quality of the analytic approximation starts to deteriorate slightly in contrast to the numerical approach when computing ts in terms of the field that satisfies hperp > 0.15 × K and h0 = 1.5 × K. Additionally, existence of a comparably small perpendicular bias field (hperp << h0) causes ts to decrease in a roughly exponential manner when hperp increases.
    [Show full text]
  • Quantum Control of Topological Defects in Magnetic Systems
    Quantum control of topological defects in magnetic systems So Takei1, 2 and Masoud Mohseni3 1Department of Physics, Queens College of the City University of New York, Queens, NY 11367, USA 2The Physics Program, The Graduate Center of the City University of New York, New York, NY 10016, USA 3Google Inc., Venice, CA 90291, USA (Dated: October 16, 2018) Energy-efficient classical information processing and storage based on topological defects in magnetic sys- tems have been studied over past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose non-invasive methods to coherently control and readout the quantum state using ac magnetic fields and magnetic force mi- croscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three- level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall sizes of 10 100 nm and reasonable material parameters, we estimate qubit − operating temperatures in the range of 0:1 1 K, a decoherence time of about 0:01 1 µs, and the number of − − Rabi flops within the coherence time scale in the range of 102 104. − I. INTRODUCTION an order of magnitude higher than the existing superconduct- ing qubits, thus opening the possibility of macroscopic quan- tum information processing at temperatures above the dilu- Topological spin structures are stable magnetic configura- tion fridge range.
    [Show full text]
  • Two-Dimensional Field-Sensing Map and Magnetic Anisotropy Dispersion
    PHYSICAL REVIEW B 83, 144416 (2011) Two-dimensional field-sensing map and magnetic anisotropy dispersion in magnetic tunnel junction arrays Wenzhe Zhang* and Gang Xiao† Department of Physics, Brown University, Providence, Rhode Island 02912, USA Matthew J. Carter Micro Magnetics, Inc., 617 Airport Road, Fall River, Massachusetts 02720, USA (Received 22 July 2010; revised manuscript received 24 January 2011; published 22 April 2011) Due to the inherent disorder in local structures, anisotropy dispersion exists in almost all systems that consist of multiple magnetic tunnel junctions (MTJs). Aided by micromagnetic simulations based on the Stoner-Wohlfarth (S-W) model, we used a two-dimensional field-sensing map to study the effect of anisotropy dispersion in MTJ arrays. First, we recorded the field sensitivity value of an MTJ array as a function of the easy- and hard-axis bias fields, and then extracted the anisotropy dispersion in the array by comparing the experimental sensitivity map to the simulated map. Through a mean-square-error-based image processing technique, we found the best match for our experimental data, and assigned a pair of dispersion numbers (anisotropy angle and anisotropy constant) to the array. By varying each of the parameters one at a time, we were able to discover the dependence of field sensitivity on magnetoresistance ratio, coercivity, and magnetic anisotropy dispersion. The effects from possible edge domains are also discussed to account for a correction term in our analysis of anisotropy angle distribution using the S-W model. We believe this model is a useful tool for monitoring the formation and evolution of anisotropy dispersion in MTJ systems, and can facilitate better design of MTJ-based devices.
    [Show full text]
  • Magnetic Materials: Hysteresis
    Magnetic Materials: Hysteresis Ferromagnetic and ferrimagnetic materials have non-linear initial magnetisation curves (i.e. the dotted lines in figure 7), as the changing magnetisation with applied field is due to a change in the magnetic domain structure. These materials also show hysteresis and the magnetisation does not return to zero after the application of a magnetic field. Figure 7 shows a typical hysteresis loop; the two loops represent the same data, however, the blue loop is the polarisation (J = µoM = B-µoH) and the red loop is the induction, both plotted against the applied field. Figure 7: A typical hysteresis loop for a ferro- or ferri- magnetic material. Illustrated in the first quadrant of the loop is the initial magnetisation curve (dotted line), which shows the increase in polarisation (and induction) on the application of a field to an unmagnetised sample. In the first quadrant the polarisation and applied field are both positive, i.e. they are in the same direction. The polarisation increases initially by the growth of favourably oriented domains, which will be magnetised in the easy direction of the crystal. When the polarisation can increase no further by the growth of domains, the direction of magnetisation of the domains then rotates away from the easy axis to align with the field. When all of the domains have fully aligned with the applied field saturation is reached and the polarisation can increase no further. If the field is removed the polarisation returns along the solid red line to the y-axis (i.e. H=0), and the domains will return to their easy direction of magnetisation, resulting in a decrease in polarisation.
    [Show full text]