Advanced Food Technology Workshop Report – Volume I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Control of Listeria Monocytogenes in Ready-To-Eat Foods: Guidance for Industry Draft Guidance
Contains Nonbinding Recommendations Control of Listeria monocytogenes in Ready-To-Eat Foods: Guidance for Industry Draft Guidance This guidance is being distributed for comment purposes only. Although you can comment on any guidance at any time (see 21 CFR 10.115(g)(5)), to ensure that FDA considers your comment on this draft guidance before we begin work on the final version of the guidance, submit either electronic or written comments on the draft guidance within 180 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to http://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number FDA–2007–D–0494 listed in the notice of availability that publishes in the Federal Register. For questions regarding this draft document contact the Center for Food Safety and Applied Nutrition (CFSAN) at 240-402-1700. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition January 2017 Contains Nonbinding Recommendations Table of Contents I. Introduction II. Background A. Regulatory Framework B. Characteristics of L. monocytogenes C. L. monocytogenes in the Food Processing Environment III. How to Apply This Guidance to Your Operations Based on the Regulatory Framework That Applies to Your Food Establishment IV. Controls on Personnel A. Hands, Gloves and Footwear B. Foamers, Footbaths, and Dry Powdered Sanitizers C. Clothing D. Controls on Personnel Associated with Specific Areas in the Plant E. -
Minnesota FACS Frameworks for Food Science
FOOD SCIENCE Minnesota Department of Education Academic Standards Course Framework Food Science Program: 090101 Program Name: Food and Food Industries Course Code: 21, 22 Food Science is a course that provides students with opportunities to participate in a variety of activities including laboratory work. This is a standards-based, interdisciplinary science course that integrates biology, chemistry, and microbiology in the context of foods and the global food industry. Students enrolled in this course formulate, design, and carry out food-base laboratory and field investigations as an essential course component. Students understand how biology, chemistry, and physics principles apply to the composition of foods, the nutrition of foods, food and food product development, food processing, food safety and sanitation, food packaging, and food storage. Students completing this course will be able to apply the principles of scientific inquiry to solve problems related to biology, physics, and chemistry in the context of highly advanced industry applications of foods. Recommended Prerequisites: Fundamentals of Food Preparation, Nutrition and Wellness Application of Content and Multiple Hour Offerings Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally. Career and Technical Student Organizations Career and Technical Student Organizations (CTSO) are considered a powerful instructional tool when integrated into Career and Technical Education programs. -
HURDLE TECHNOLOGIES: MICROBIAL INACTIVATION by PULSED ELECTRIC FIELDS DURING MILK PROCESSING a Thesis Presented to the Faculty O
HURDLE TECHNOLOGIES: MICROBIAL INACTIVATION BY PULSED ELECTRIC FIELDS DURING MILK PROCESSING A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by OSCAR RODRIGUEZ GONZALEZ In partial fulfillment of requirements for the degree of Doctor of Philosophy December, 2010 ©Oscar Rodriguez Gonzalez, 2010 ABSTRACT HURDLE TECHNOLOGIES: MICROBIAL INACTIVATION BY PULSED ELECTRIC FIELDS DURING MILK PROCESSING Oscar Rodriguez Gonzalez Advisor: University of Guelph, 2010 Dr. Mansel W. Griffiths The application of non-thermal processes pulsed electric fields (PEF) and cross-flow micro-filtration (CFMF) continuous to be studied with the purpose of controlling microorganisms in milk. Trends suggesting increased adoption include the study of Food Safety Objectives as a safety criterion, the promotion of sustainable processing, and the implementation of hurdle strategies. While the advance of gentle processing is counteracted by the risk of enhanced resistance due to microbial stress response, several techniques can be applied to quantitatively assess its impact. The objective of this project was to evaluate the effectiveness of microbial inactivation by PEF and CFMF at various steps of milk processing including shelf-life, its comparison with high temperature short time (HTST) pasteurization, and the quantitative assessment of the cross protection resistance to PEF of Escherichia coli O157:H7. Some differences in mesophilics inactivation were observed in milks (fat contents between 1.1% and 3.1%). Increasing the PEF inlet temperature decreased the treatment time by three or two-fold. The combination of CFMF/PEF yielded similar microbial reductions as CFMF/HTST. Higher inactivation of the coliforms was achieved in homogenized cream (12% fat) compared to non-homogenized. -
Engineering Aspects of Food Processing - P.P
CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY – Vol. V - Engineering Aspects of Food Processing - P.P. Lewicki ENGINEERING ASPECTS OF FOOD PROCESSING P.P. Lewicki Warsaw University of Life Sciences (SGGW), Warsaw, Poland The State College of Computer Science and Business Administration in Lomza, Poland Keywords: Metabolic energy requirement, food production, wet cleaning, dry cleaning, homogenization, membrane filtration, cyclones, clarifixator, coating, extrusion, agglomeration, fluidization, battering, uperisation, pasteurization, sterilization, baking, chilling, freezing, hydrocooling, cryoconcentration, glazing, extrusion-cooking, roasting, frying, thermoplasticity, logistics. Contents 1. Introduction 2. Food industry 3. Food processing 3.1. Mechanical Processes 3.2. Heat Transfer Processes 3.3. Mass Transfer Processes 3.4. Materials Handling 3.5. Hygiene of Processing 3.6. Food Engineering 4. Concluding remarks Glossary Bibliography Biographical Sketch Summary The main aim of this chapter is to show the impact of chemical and process engineering on the development of nowadays food industry. The contribution presents food as a substance needed to keep a man alive, which is consumed every day and must be produced in enormous amounts. Food industry is a manufacturer of food, employs hundred of UNESCOthousands of employees and uses– considerableEOLSS quantities of energy and water. Basic processes used in food processing are briefly described. They are divided into three groups of unit operations that are mechanical processes and heat and mass transfer processes. In each group of unit operations specificity of the process is emphasized. AtSAMPLE the same time, it is shown howCHAPTERS theories of momentum, heat and mass transfer developed by chemical engineering are applied in designing food-processing equipment. The question of hygienic design and processing of safe food is explicitly stressed. -
Concept of Hurdle Technology for Food Safety of Food Products of Animal Origin
ACTA SCIENTIFIC MICROBIOLOGY (ISSN: 2581-3226) Volume 3 Issue 11 November 2020 Review Article Concept of Hurdle Technology for Food Safety of Food Products of Animal Origin Anita Chappalwar1, Vikas Pathak2, Meena Goswami3*, Raghvendra Received: July 10, 2020 Mishra1 and Prashant Singh1 Published: October 30, 2020 1PhD Scholar Department of Livestock Products Technology, College of Veterinary © All rights are reserved by Meena Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India Goswami., et al. 2Professor and Head, Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India 3Assistant Professor, Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India *Corresponding Author: Meena Goswami, Assistant Professor, Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India. Abstract Foods obtained by animals like milk and meat products are highly perishable and very prone to different physic-chemical and microbial spoilage. These are nutritionally dense food with higher amount of moisture and other nutrients, hence provide conducive environment for growth of microorganisms. Hurdle technology deliberately combines existing and new preservation techniques to establish a series of preservative factors that can achieve multi-target, mild but reliable preservation effects against microbial spoilage of food. -
Food Microbiology - Radomir Lasztity
FOOD QUALITY AND STANDARDS – Vol. III - Food Microbiology - Radomir Lasztity FOOD MICROBIOLOGY Radomir Lasztity Department of Biochemistry and Food Technology, Budapest University of Technology and Economics, Hungary Keywords: aerobic, anaerobic, antibiotic, ascus, ascomycetes, ascospora, bacteria, botulism, budding, coccus, colony, facultative aerobic, filament, filamentous fungi, film yeasts, food-borne diseses, food-borne pathogens, food microbiology, fungi imperfecti, HACCP, heterofermentative, homofermentative, hypha, industrial use of microorganisms (molds, yeasts, bacteria), lactic acid bacteria, mesophilic, methods in food microbiology, microaerobic, microorganism, molds, morphological characteristics, mycelium, pasteurization, preservation of foods, psychrophilic, single cell protein, spoilage of foods, spore, sterilization, thermophilic, true yeast, water activity, yeasts. Contents 1. Introduction 2. Microorganisms Important in Food 2.1. Molds 2.1.1. General 2.1.2. Molds Occurring in Foods 2.2. Yeasts 2.2.1. General 2.2.2. Classification,Important Genera of Yeasts and Their Industrial Use. 2.3. Bacteria 2.3.1. General 2.3.2. Classification. Bacteria Important in Food Microbiology. 2.3.3. Industrial Use of Bacteria. 2.3.4. Food-borne Pathogens 3. Microbiology of Spoilage and Preservation of Food 3.1. General 3.2. Spoilage of Foods. 3.3. Preservation of Foods 3.3.1. Reduction of Moisture Content 3.3.2. Preservation by Use of High Temperatures. 3.3.3.PresevationUNESCO at low temperatures – EOLSS 3.3.4. Preservation of Foods by Preservatives. 3.3.5. Other MethodsSAMPLE of Food Preservation CHAPTERS 4. Food-borne Diseases 4.1. General 4.2. Microorganisms Causing Food Infection and Food Poisoning. 4.2.1. Botulism 4.2.2. Staphylococcal Food Poisoning 4.2.3. -
Cooking Nutrition and Food Technology
LIBRARY OF CONGRESS COLLECTIONS POLICY STATEMENTS Cooking, Nutrition and Food Technology Contents I. Scope II. Research Strengths III. Best Editions IV. Collecting Policy V. Acquisition Sources VI. Collecting overlap with other National Libraries VII. Collecting Levels I. Scope Materials on cooking, food technology and nutrition are covered in this statement. These works are primarily found in subclasses of the Library of Congress classification T. Due to the interdisciplinary nature of the subject, however, there is frequent overlap with other subject areas within the Library of Congress Classification System. Works on home economics, cooking, food chemistry, food safety testing, food supply safety issues, food contamination, Hazard Analysis Critical Control Points (HACCP), nutritional components of foods, food analysis methods and analytical tables, food additives, food design and production, and careers in the food industry, as well as the history of food and food preparation, preservation, and consumption are covered here. Also included are works on food processing and manufacture, technology, and all types of food engineering, and preservation, including refrigeration and fermentation, food additives and compounds, flavor technology, beverage technology, and fats and oils. II. Research Strengths This interdisciplinary subject area brings together materials from a variety of fields. Subject areas of interest include food safety, food chemistry and analysis, food adulteration and contamination, human nutrition, physiology, biochemistry, food production and sustainability, food technology and manufacture, food preservation and processing, the history of food and society, the history of human nutrition, gastronomy, and cooking. The strength of the Library of Congress collections in these areas lies in their breadth and depth, reflecting the Library’s long history of collecting to support research by Congress and the U. -
High Oxygen As an Additional Factor in Food Preservation Promotor: Prof
High Oxygen as an additional factor in Food Preservation Promotor: Prof. Dr. ir. F.M. Rombouts Hoogleraar in de Levensmiddelenhygiëne en microbiologie, Wageningen Universiteit Copromotors: Dr. L.G.M. Gorris SEAC, Unilever, Colworth House, Verenigd Koninkrijk Dr. E.J. Smid Groupleader Natural Ingredients, NIZO Food Research, Ede Samenstelling promotiecommissie: Prof. Dr. ir. J. Debevere (Universiteit Gent, België) Prof. Dr. G.J.E. Nychas (Agricultural University of Athens, Griekenland) Prof. Dr. J.T.M. Wouters (Wageningen Universiteit) Dr. J. Hugenholtz (NIZO Food Research, Ede) Athina Amanatidou High Oxygen as an additional factor in Food Preservation Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus, van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 oktober des namiddags te half twee in de Aula Amanatidou A.-High Oxygen as an additional factor in Food Preservation-2001 Thesis Wageningen University-With summary in Dutch- pp. 114 ISBN: 90-5808-474-4 To my parents, my brother and to Erik Abstract In this thesis, the efficacy of high oxygen as an additional hurdle for food preservation is studied. At high oxygen conditions and at low temperature, significant impairment of growth and viability of bacterial cells is found to occur as the result of free radical attack. The imposed oxidative stress leads - to an increase of intracellularly generated reactive oxygen species (mainly O2 , H2O2 and HO·), which disturbs the cellular homeostasis due to catabolic imbalance and results in growth inhibition. The so- called “free radical burst” probably is responsible for the induction of a host defence mechanism against the destructive impact of high oxygen. -
Introduction to Food and Food Processing
2010 INTRODUCTION TO ANDFOOD FOOD PROCESSING – I TRAINING MANUAL FOR FOOD SAFETY REGULATORS Vol THE TRAINING MANUAL FOR FOOD SAFETY REGULATORS WHO ARE INVOLVED IN IMPLEMENTING FOOD SAFETY AND STANDARDS ACT 2006 ACROSS THE COUNTRY FOODS SAFETY & STANDARDS AUTHORITY OF INDIA (MINISTRY OF HEALTH & FAMILY WELFARE) FDA BHAVAN, KOTLA ROAD, NEW DELHI – 110 002 Website: www.fssai.gov.in INDEX TRAINING MANUAL FOR FOOD SAFETY OFFICERS Sr Subject Topics Page No No 1 INTRODUCTION TO INTRODUCTION TO FOOD FOOD – ITS Carbohydrates, Protein, fat, Fibre, Vitamins, Minerals, ME etc. NUTRITIONAL, Effect of food processing on food nutrition. Basics of Food safety TECHNOLOGICAL Food Contaminants (Microbial, Chemical, Physical) AND SAFETY ASPECTS Food Adulteration (Common adulterants, simple tests for detection of adulteration) Food Additives (Classification, functional role, safety issues) Food Packaging & labelling (Packaging types, understanding labelling rules & 2 to 100 Regulations, Nutritional labelling, labelling requirements for pre-packaged food as per CODEX) INTRODUCTION OF FOOD PROCESSING AND TECHNOLOGY F&VP, Milk, Meat, Oil, grain milling, tea-Coffee, Spices & condiments processing. Food processing techniques (Minimal processing Technologies, Photochemical processes, Pulsed electric field, Hurdle Technology) Food Preservation Techniques (Pickling, drying, smoking, curing, caning, bottling, Jellying, modified atmosphere, pasteurization etc.) 2 FOOD SAFETY – A Codex Alimentarius Commission (CODEX) GLOBAL Introduction Standards, codes -
Nutrition, Food Science and Technology April 08-09, 2019 Abu Dhabi, UAE
conferenceseries.com E K Mukhamejanov, J Nutr Food Sci 2019, Volume 9 DOI: 10.4172/2155-9600-C5-101 2nd International Conference on Nutrition, Food Science and Technology April 08-09, 2019 Abu Dhabi, UAE Fucoidan is the nutraceutical for support of homeostasis of metabolic indicators and systems of their regulation E K Mukhamejanov JSC National Medical University, Kazakhstan ustentation of homeostatic processes is the basic principle of vital activity of organism. Even small swings Sof concentration of some metabolites in the blood, especially glucose, lead to a violation of course of metabolic processes and pose a threat to vital activity of organism. Neuro-hormonal system, cytokine system and number of cell signaling systems participate in regulation of rate of metabolic processes. The influence of pharmaceutical preparations on these regulation systems can promote the development of serious complications, so there is an active search of natural food compounds with high bioactivity. The greatest interest in this situation is fucoidan, which is sulfated polysaccharide of brown seaweed. It is shown that it supports the work of the central nervous system by moderately reducing the death of cholinergic neurons and maintaining the level of dopamine, interferes with the development of hormonal imbalance, promotes a decrease in the level of inflammatory cytokines in the blood and maintenance of the concentration of pro- inflammatory, improves the functioning of the insulin cascade signaling systems at the mTOR kinase level by activating the translation process, leads to a decrease in free radicals (antioxidant) and the restoration of their level prooxidant, supports the homeostasis of the coagulation system due to anticoagulant and procoagulant properties. -
Food & Nutrition Journal
Food & Nutrition Journal Bajwa U and Goraya RK. Food Nutr J 1: 115. DOI: 10.29011/2575-7091.100015 Review Articles The Sweetness Technology of Sugar Substituted Low-Calorie Beverages Rajpreet Kaur Goraya, Usha Bajwa* Department of Food Science and Technology, Punjab Agricultural University, India *Corresponding author: Usha Bajwa, Department of Food Science and Technology, Punjab Agricultural University, Ludhi- ana-141004, India, E-mail: [email protected] Citation: Bajwa U and Goraya RK (2016) The Sweetness Technology of Sugar Substituted Low-Calorie Beverages. Food Nutr J 1: 115. DOI: 10.29011/2575-7091.100015 Received Date: 15 November, 2016; Accepted Date: 12 December, 2016; Published Date: 16 December, 2016 Abstract A perturbing increase in the number of diabetics and obese people in all age groups of the population has raised concern in the scientific and industrial community to develop low calorie or no added sugar beverages. Nowadays such sugar-free beverages are gaining popularity because of their inherent thirst quenching properties and fewer calories. Production of such beverages has been possible with the replacement of sugar and incorporation of artificial sweeteners which are low/free in calorie content. The sweetness technology for low-calorie beverages has attained strong commer- cial success with the safe use of non-nutritive sweeteners that deliver good taste quality. However, some considerations for their efficient use include their solubility and stability in beverage systems along with cost effectiveness. The assess- ment of non-nutritive sweeteners shows that high-potency artificial non-caloric, include synthetic sweeteners, i.e. as- partame, acesulfame-K, Cyclamate, Neotame, Saccharin and Sucralose whereas natural ones embrace Stevia and Monk Fruit extract. -
Food Technology for Safe and Nutritious Food
12. Food technology 177 12 Food technology for safe and nutritious food Dominique Bounie, Charlotte Bienfait, Shane Prigge and Bertrand Salvignol 1. Introduction Food technology is the application of food science to the selection, preservation, processing, packaging, distribution, control and use of safe, nutritious, tasty and convenient food. Food technologists study the physical, microbiological and chemical make-up of food. Depending on their area of specialization, they may develop ways of designing, processing, packaging, controlling, transporting or storing food, according to consumers’ expectations, industry specifications and government regulations. Food technology at WFP serves mainly to support different units and country offices by providing technical advice and solutions to enable the production of safe and nutritious food that is appropriate for humanitarian aid. This chapter describes how food technology can support and improve WFP’s operations in accordance with WFP’s mandate and strategy – for example, in two of its recent corporate initiatives: Purchase for Progress (P4P) and the Nutrition Improvement Strategy. Figure 12.1 lists the types of food that WFP distributes for different groups of beneficiaries in order of the technological complexity of producing the foods; the prices of each are given in the notes. This chapter is organized by type of food used by WFP, and provides examples of innovative experiences, trials or pilot studies aimed at improving the quality, taste, convenience or safety of WFP foods and the processes