Phenazepam Pre-Review Report Agenda Item 5.8
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Yerevan State Medical University After M. Heratsi
YEREVAN STATE MEDICAL UNIVERSITY AFTER M. HERATSI DEPARTMENT OF PHARMACY Balasanyan M.G. Zhamharyan A.G. Afrikyan Sh. G. Khachaturyan M.S. Manjikyan A.P. MEDICINAL CHEMISTRY HANDOUT for the 3-rd-year pharmacy students (part 2) YEREVAN 2017 Analgesic Agents Agents that decrease pain are referred to as analgesics or as analgesics. Pain relieving agents are also called antinociceptives. An analgesic may be defined as a drug bringing about insensibility to pain without loss of consciousness. Pain has been classified into the following types: physiological, inflammatory, and neuropathic. Clearly, these all require different approaches to pain management. The three major classes of drugs used to manage pain are opioids, nonsteroidal anti-inflammatory agents, and non opioids with the central analgetic activity. Narcotic analgetics The prototype of opioids is Morphine. Morphine is obtained from opium, which is the partly dried latex from incised unripe capsules of Papaver somniferum. The opium contains a complex mixture of over 20 alkaloids. Two basic types of structures are recognized among the opium alkaloids, the phenanthrene (morphine) type and the benzylisoquinoline (papaverine) type (see structures), of which morphine, codeine, noscapine (narcotine), and papaverine are therapeutically the most important. The principle alkaloid in the mixture, and the one responsible for analgesic activity, is morphine. Morphine is an extremely complex molecule. In view of establish the structure a complicated molecule was to degrade the: compound into simpler molecules that were already known and could be identified. For example, the degradation of morphine with strong base produced methylamine, which established that there was an N-CH3 fragment in the molecule. -
Ionization Energies of Benzodiazepines Salvatore Millefiori, Andrea Alparone
Electronic properties of neuroleptics: ionization energies of benzodiazepines Salvatore Millefiori, Andrea Alparone To cite this version: Salvatore Millefiori, Andrea Alparone. Electronic properties of neuroleptics: ionization energies of benzodiazepines. Journal of Molecular Modeling, Springer Verlag (Germany), 2010, 17 (2), pp.281- 287. 10.1007/s00894-010-0723-7. hal-00590996 HAL Id: hal-00590996 https://hal.archives-ouvertes.fr/hal-00590996 Submitted on 6 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Editorial Manager(tm) for Journal of Molecular Modeling Manuscript Draft Manuscript Number: JMMO1191R1 Title: Electronic properties of neuroleptics: ionization energies of benzodiazepines Article Type: Original paper Keywords: Benzodiazepines; vertical ionization energies; vertical electron affinities; DFT calculations; electron propagator theory calculations. Corresponding Author: Prof. Salvatore Millefiori, Corresponding Author's Institution: First Author: Salvatore Millefiori Order of Authors: Salvatore Millefiori; Andrea Alparone Abstract: Abstract. Vertical ionization energies (VIEs) of medazepam and nordazepam and of their molecular subunits have been calculated with the electron propagator method in the P3/CEP-31G* approximation. Vertical electron affinities (VEAs) have been obtained with a ΔSCF procedure at the DFT-B3LYP/6-31+G* level of theory. Excellent correlations have been achieved between IEcalc and IEexp allowing reliable assignment of the ionization processes. -
Medical Review Officer Manual
Department of Health and Human Services Substance Abuse and Mental Health Services Administration Center for Substance Abuse Prevention Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs EFFECTIVE OCTOBER 1, 2010 Note: This manual applies to Federal agency drug testing programs that come under Executive Order 12564 dated September 15, 1986, section 503 of Public Law 100-71, 5 U.S.C. section 7301 note dated July 11, 1987, and the Department of Health and Human Services Mandatory Guidelines for Federal Workplace Drug Testing Programs (73 FR 71858) dated November 25, 2008 (effective October 1, 2010). This manual does not apply to specimens submitted for testing under U.S. Department of Transportation (DOT) Procedures for Transportation Workplace Drug and Alcohol Testing Programs (49 CFR Part 40). The current version of this manual and other information including MRO Case Studies are available on the Drug Testing page under Medical Review Officer (MRO) Resources on the SAMHSA website: http://www.workplace.samhsa.gov Previous Versions of this Manual are Obsolete 3 Table of Contents Chapter 1. The Medical Review Officer (MRO)........................................................................... 6 Chapter 2. The Federal Drug Testing Custody and Control Form ................................................ 7 Chapter 3. Urine Drug Testing ...................................................................................................... 9 A. Federal Workplace Drug Testing Overview.................................................................. -
Guaiana, G., Barbui, C., Caldwell, DM, Davies, SJC, Furukawa, TA
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Explore Bristol Research Guaiana, G., Barbui, C., Caldwell, D. M., Davies, S. J. C., Furukawa, T. A., Imai, H., ... Cipriani, A. (2017). Antidepressants, benzodiazepines and azapirones for panic disorder in adults: a network meta-analysis. Cochrane Database of Systematic Reviews, 2017(7), [CD012729]. https://doi.org/10.1002/14651858.CD012729 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1002/14651858.CD012729 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Cochrane Library at https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012729/full . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms Cochrane Database of Systematic Reviews Antidepressants, benzodiazepines and azapirones for panic disorder in adults: a network meta-analysis (Protocol) Guaiana G, Barbui C, Caldwell DM, Davies SJC, Furukawa TA, Imai H, Koesters M, Tajika A, Bighelli I, Pompoli A, Cipriani A Guaiana G, Barbui C, Caldwell DM, Davies SJC, Furukawa TA, Imai H, Koesters M, Tajika A, Bighelli I, Pompoli A, Cipriani A. Antidepressants, benzodiazepines and azapirones for panic disorder in adults: a network meta-analysis. Cochrane Database of Systematic Reviews 2017, Issue 7. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
(12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn Et Al
US 2004O224012A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn et al. (43) Pub. Date: Nov. 11, 2004 (54) TOPICAL APPLICATION AND METHODS Related U.S. Application Data FOR ADMINISTRATION OF ACTIVE AGENTS USING LIPOSOME MACRO-BEADS (63) Continuation-in-part of application No. 10/264,205, filed on Oct. 3, 2002. (76) Inventors: Pichit Suvanprakorn, Bangkok (TH); (60) Provisional application No. 60/327,643, filed on Oct. Tanusin Ploysangam, Bangkok (TH); 5, 2001. Lerson Tanasugarn, Bangkok (TH); Suwalee Chandrkrachang, Bangkok Publication Classification (TH); Nardo Zaias, Miami Beach, FL (US) (51) Int. CI.7. A61K 9/127; A61K 9/14 (52) U.S. Cl. ............................................ 424/450; 424/489 Correspondence Address: (57) ABSTRACT Eric G. Masamori 6520 Ridgewood Drive A topical application and methods for administration of Castro Valley, CA 94.552 (US) active agents encapsulated within non-permeable macro beads to enable a wider range of delivery vehicles, to provide longer product shelf-life, to allow multiple active (21) Appl. No.: 10/864,149 agents within the composition, to allow the controlled use of the active agents, to provide protected and designable release features and to provide visual inspection for damage (22) Filed: Jun. 9, 2004 and inconsistency. US 2004/0224012 A1 Nov. 11, 2004 TOPCAL APPLICATION AND METHODS FOR 0006 Various limitations on the shelf-life and use of ADMINISTRATION OF ACTIVE AGENTS USING liposome compounds exist due to the relatively fragile LPOSOME MACRO-BEADS nature of liposomes. Major problems encountered during liposome drug Storage in vesicular Suspension are the chemi CROSS REFERENCE TO OTHER cal alterations of the lipoSome compounds, Such as phos APPLICATIONS pholipids, cholesterols, ceramides, leading to potentially toxic degradation of the products, leakage of the drug from 0001) This application claims the benefit of U.S. -
Understanding Benzodiazephine Use, Abuse, and Detection
Siemens Healthcare Diagnostics, the leading clinical diagnostics company, is committed to providing clinicians with the vital information they need for the accurate diagnosis, treatment and monitoring of patients. Our comprehensive portfolio of performance-driven systems, unmatched menu offering and IT solutions, in conjunction with highly responsive service, is designed to streamline workflow, enhance operational efficiency and support improved patient care. Syva, EMIT, EMIT II, EMIT d.a.u., and all associated marks are trademarks of General Siemens Healthcare Diagnostics Inc. All Drugs other trademarks and brands are the Global Division property of their respective owners. of Abuse Siemens Healthcare Product availability may vary from Diagnostics Inc. country to country and is subject 1717 Deerfield Road to varying regulatory requirements. Deerfield, IL 60015-0778 Please contact your local USA representative for availability. www.siemens.com/diagnostics Siemens Global Headquarters Global Siemens Healthcare Headquarters Siemens AG Understanding Wittelsbacherplatz 2 Siemens AG 80333 Muenchen Healthcare Sector Germany Henkestrasse 127 Benzodiazephine Use, 91052 Erlangen Germany Abuse, and Detection Telephone: +49 9131 84 - 0 www.siemens.com/healthcare www.usa.siemens.com/diagnostics Answers for life. Order No. A91DX-0701526-UC1-4A00 | Printed in USA | © 2009 Siemens Healthcare Diagnostics Inc. Syva has been R1 R2 a leading developer N and manufacturer of AB R3 X N drugs-of-abuse tests R4 for more than 30 years. R2 C Now part of Siemens Healthcare ® Diagnostics, Syva boasts a long and Benzodiazepines have as their basic chemical structure successful track record in drugs-of-abuse a benzene ring fused to a seven-membered diazepine ring. testing, and leads the industry in the All important benzodiazepines contain a 5-aryl substituent ring (ring C) and a 1,4–diazepine ring. -
Retention Behaviour of Some Benzodiazepines in Solid-Phase Extraction Using Modified Silica Adsorbents Having Various Hydrophobicities
ACADEMIA ROMÂNĂ Rev. Roum. Chim., Revue Roumaine de Chimie 2015, 60(9), 891-898 http://web.icf.ro/rrch/ RETENTION BEHAVIOUR OF SOME BENZODIAZEPINES IN SOLID-PHASE EXTRACTION USING MODIFIED SILICA ADSORBENTS HAVING VARIOUS HYDROPHOBICITIES Elena BACALUM,a Mihaela CHEREGIb,* and Victor DAVIDb,* a Research Institute from University of Bucharest – ICUB, 36-46 M. Kogalniceanu Blvd., Bucharest, 050107, Roumania b University of Bucharest, Faculty of Chemistry, Department of Analytical Chemistry, 90 Panduri Ave, Bucharest – 050663, Roumania Received April 6, 2015 The retention properties of six benzodiazepines (alprazolam, bromazepam, diazepam, flunitrazepam, medazepam, and nitrazepam) on four different solid phase extraction silica 1.0 adsorbents with various hydrophobicities (octadecylsilica, octylsilica, phenylsilica, and cyanopropylsilica) were 0.8 H O investigated. The breakthrough curves showed a significant N retention of these compounds on octadecylsilica, octylsilica, 0.6 Br N phenylsilica, excepting alprazolam that has a poor retention on 0 C/C N octadecylsilica. These results can be explained by the 0.4 PHENYL CN hydrophobic character of studied benzodiazepines (octanol- C18 0.2 C8 Bromazepam water partition constant, log Kow, being situated within the interval 1.90-4.45). A poor retention on cyanopropylsilica was 0.0 observed for all studied compounds indicating that π-π and 0 102030405060708090100 Volume (mL) polar intermolecular interactions have a less significant role in their retention on this adsorbent. Generally, the breakthrough -
The Anxiolytic Etifoxine Protects Against Convulsant and Anxiogenic
Alcohol 43 (2009) 197e206 The anxiolytic etifoxine protects against convulsant and anxiogenic aspects of the alcohol withdrawal syndrome in mice Marc Verleye*, Isabelle Heulard, Jean-Marie Gillardin Biocodex-De´partement de Pharmacologie-Zac de Mercie`res, Chemin d’Armancourt 60200 Compie`gne, France Received 11 December 2008; received in revised form 3 February 2009; accepted 4 February 2009 Abstract Change in the function of g-aminobutyric acidA (GABAA) receptors attributable to alterations in receptor subunit composition is one of main molecular mechanisms with those affecting the glutamatergic system which accompany prolonged alcohol (ethanol) intake. These changes explain in part the central nervous system hyperexcitability consequently to ethanol administration cessation. Hyperexcitability associated with ethanol withdrawal is expressed by physical signs, such as tremors, convulsions, and heightened anxiety in animal models as well as in humans. The present work investigated the effects of anxiolytic compound etifoxine on ethanol-withdrawal paradigms in a mouse model. The benzodiazepine diazepam was chosen as reference compound. Ethanol was given to NMRI mice by a liquid diet at 3% for 8 days, then at 4% for 7 days. Under these conditions, ethanol blood level ranged between 0.5 and 2 g/L for a daily ethanol intake varying from 24 to 30 g/kg. These parameters permitted the emergence of ethanol-withdrawal symptoms once ethanol administration was terminated. Etifoxine (12.5e25 mg/kg) and diazepam (1e4 mg/kg) injected intraperitoneally 3 h 30 min after ethanol removal, decreased the severity in handling-induced tremors and convulsions in the period of 4e6 h after withdrawal from chronic ethanol treatment. -
Etifoxine Impairs Neither Alertness Nor Cognitive Functions of the Elderly: a Randomized, Double-Blind, Placebo-Controlled Crossover Study
ARTICLE IN PRESS JID: NEUPSY [m6+; June 28, 2018;22:42 ] European Neuropsychopharmacology (2018) 000, 1–8 www.elsevier.com/locate/euroneuro Etifoxine impairs neither alertness nor cognitive functions of the elderly: A randomized, double-blind, placebo-controlled crossover study a ,b , ∗ c b D. Deplanque , F. Machuron , N. Waucquier , b b b a E. Jozefowicz , S. Duhem , S. Somers , O. Colin , c a A. Duhamel , R. Bordet a Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular cognitive disorders, F-59000 Lille, France b Univ. Lille, Inserm, CHU Lille, CIC 1403 - Centre d’Investigation Clinique, F-59000 Lille, France c Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, F-59000 Lille, France Received 22 December 2017; received in revised form 4 May 2018; accepted 17 May 2018 Available online xxx KEYWORDS Abstract Etifoxine; Etifoxine hydrochloride (Stresam ®), a treatment indicated for psychosomatic manifestations of Benzodiazepines; anxiety, could be an alternative to benzodiazepines. While no impact on alertness and cognitive Anxiolytic; functions has been proven among youth, data on elderly are lacking. The primary objective of Cognition; this study was to measure the impact of etifoxine, lorazepam or placebo on alertness in the el- Elderly; derly. The secondary objectives were to evaluate cognitive performances and adverse effects. Geriatric psychiatry In this randomized, placebo-controlled, double-blind, 3-way crossover design, 30 healthy vol- unteers aged 65 to 75 years underwent three one-day sessions. After treatment intake, stan- dardized cognitive tests were conducted using the Cambridge Neuropsychological Test Auto- mated Batteries and other psychological tests (Stroop, Rey Auditory Verbal Learning Test, Digit R Registration: EudraCT 2012-005530-11 and NCT 02147548 ∗ Correspondence to: Department of medical Pharmacology, Faculty of Medicine, 1 place Verdun, 59045 Lille, France. -
Effects of Supplementary Protection Mechanisms for Pharmaceutical Products
Final report, May 2018 Effects of supplementary protection mechanisms for pharmaceutical products www.technopolis-group.com Effects of supplementary protection mechanisms for pharmaceutical products technopolis |group| May 2018 Thyra de Jongh* Alfred Radauer Sven Bostyn Joost Poort * Corresponding author. [email protected] About the authors Thyra de Jongh PhD, is a Senior Consultant Health & Life Sciences at Technopolis Group in Amsterdam. She specialises in analysis of health systems and policies, and research and innovation in the health and life sciences. She has a particular interest in pharmaceutical innovation and access to medicine. (thyra.dejongh@technopolis- group.com) Alfred Radauer, is Senior Consultant at Technopolis Group in Vienna and leads the Intellectual Property & Standards (IPS) group within Technopolis. His and the IPS group work elaborate on the interfaces between legal, technological and economic issues of IP and standards in innovation policy as well as the interaction of IP with regulation and other policy areas. ([email protected]) Sven Bostyn Lic.Jur, LL.M, PhD, is a senior lecturer in Intellectual Property Law at the University of Liverpool Law School. He is also an assistant professor at the Institute for Information Law, University of Amsterdam. He is one of the leading experts in Europe in patent law and related subjects in the areas of life sciences and pharmaceutical inventions, and has more than sixty single-authored publications. ([email protected]) Joost Poort PhD, is an associate professor in economics at the Institute for Information law, University of Amsterdam. He brings an economic perspective to various multidisciplinary research projects, with particular interest in intellectual property. -
List of Tuberculosis Pharmaceutical Products Classified According to the Global Fund Quality Assurance Policy
List Of Tuberculosis Pharmaceutical Products classified according to the Global Fund Quality Assurance Policy Edition: Version 104 - 14 July 2021 The list is an overview of pharmaceutical products subject to the Global Fund Quality Assurance Policy that are listed in National and/or WHO standard treatment guidelines and classified according to the various options (A, B, and ERP reviewed) defined in the Global Fund Quality Assurance Policy (July 2009, amended in December 2010). The list is developed as a tool to assist Principal Recipients (PR) of Global Fund grants to identify the status of finished pharmaceutical products according to the Global Fund Quality Assurance Policy. The pharmaceutical products are classified based on the following information A classified product - Listed on WHO prequalification list; B classified product - Stringent NDRA Registration letter/Marketing Authorization; ERP reviewed product- Permitted for time-limited procurement based on advice by the Expert Review Panel (ERP); Please note that the list is not an exhaustive list. A PR can procure product(s) not listed in the current list as long as PR demonstrates that the product is compliant with the Global Fund Quality Assurance Policy. The Global Fund list includes the following information: - "Important Notes" for helpful information; - A, B, and ERP reviewed products; - Period validity of the ERP reviewed products; - "+" means combination product, both fixed-dose combination (co-formulated) and co-packaged product ( i.e. co-blister) - [A+B]+C means A and B are in fixed-dose formulation and C is co-packaged YELLOW signifies a new entry; PINK signifies modification of an existing entry.