Ludwig Boltzmann - Wikipedia, the Free Encyclopedia 7/19/10 10:39 AM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gustav Robert Kirchhoff War Der Sohn Eines Landrichters
Akademischer Werdegang *12.03.1824 in Königsberg (heute: Kaliningrad) Besuch des Kneiphöschen Gymnasiums in Königsberg ab 1842 Studium der Mathematik und Physik an der Universität Königsberg 1847 Promotion in Berlin 1850 Berufung zum außerordentlichen Professor nach Breslau (Polen) 1854 Professor für Physik an der Universität Heidelberg 1874 – 1886 Professor für mathematische Physik in Berlin 1876 Cothenius – Medaille der Leopoldina als Auszeichnung für [1] wissenschaftliches Arbeiten † 17.10.1887 in Berlin Gustav Robert Kirchhoff war der Sohn eines Landrichters. Während des Studiums in seiner Heimatstadt wurde er u. a. von den Professoren F.E. Neumann und F. J. Richelot gelehrt. Im Physikseminar von Neumann verfasste Kirchhoff mit 21 Jahren seine erste Arbeit über den Durchgang der Elektrizität durch Platten. Während der Promotions- und Habilitationsphase an der Universität Berlin entwickelte sich eine Freundschaft mit dem Universalgenie H. Helmholtz. Kirchhoff folgte schließlich der Berufung zum außerordentlichen Professor nach Breslau, wo er R. W. Bunsen, den Erfinder des Bunsenbrenners kennen lernte. Dieser wechselte zur Universität nach Heidelberg, worauf ihm Kirchhoff folgte. Gemeinsam veröffentlichten sie zahlreiche Schriften und entdeckten, wie verschiedene chemische Elemente die Flamme eines Gasbrenners färben. Sie prägten die Spektralanalyse als physikalische Analysemethode und konnten mit ihrer Hilfe eine Erklärung der Frauenhoferlinie finden. Außerdem verzeichneten sie die Entdeckung der Elemente Caesium und Rubidium. Des Weiteren entstand bei Experimenten der Spektralanalyse der Kirchhoffsche Strahlungssatz. Kirchhoffs und Bunsens erster Spektralapparat [2] Kirchhoff arbeitete auch an der Plattentheorie. Der Piola-Kirchhoff-Spannungstensor, die Kirchhoff-Love- Hypothese und die sogenannten Kirchhoff-Platten erinnern daran. 1857 heiratete er Clara Richelot, die Tochter seines Professors für Mathematik. Gemeinsam bekamen sie vier Kinder und führten eine glückliche Ehe. -
Philosophical Rhetoric in Early Quantum Mechanics, 1925-1927
b1043_Chapter-2.4.qxd 1/27/2011 7:30 PM Page 319 b1043 Quantum Mechanics and Weimar Culture FA 319 Philosophical Rhetoric in Early Quantum Mechanics 1925–27: High Principles, Cultural Values and Professional Anxieties Alexei Kojevnikov* ‘I look on most general reasoning in science as [an] opportunistic (success- or unsuccessful) relationship between conceptions more or less defined by other conception[s] and helping us to overlook [danicism for “survey”] things.’ Niels Bohr (1919)1 This paper considers the role played by philosophical conceptions in the process of the development of quantum mechanics, 1925–1927, and analyses stances taken by key participants on four main issues of the controversy (Anschaulichkeit, quantum discontinuity, the wave-particle dilemma and causality). Social and cultural values and anxieties at the time of general crisis, as identified by Paul Forman, strongly affected the language of the debate. At the same time, individual philosophical positions presented as strongly-held principles were in fact flexible and sometimes reversible to almost their opposites. One can understand the dynamics of rhetorical shifts and changing strategies, if one considers interpretational debates as a way * Department of History, University of British Columbia, 1873 East Mall, Vancouver, British Columbia, Canada V6T 1Z1; [email protected]. The following abbreviations are used: AHQP, Archive for History of Quantum Physics, NBA, Copenhagen; AP, Annalen der Physik; HSPS, Historical Studies in the Physical Sciences; NBA, Niels Bohr Archive, Niels Bohr Institute, Copenhagen; NW, Die Naturwissenschaften; PWB, Wolfgang Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg a.o., Band I: 1919–1929, ed. A. Hermann, K.V. -
Albert Einstein
THE COLLECTED PAPERS OF Albert Einstein VOLUME 15 THE BERLIN YEARS: WRITINGS & CORRESPONDENCE JUNE 1925–MAY 1927 Diana Kormos Buchwald, József Illy, A. J. Kox, Dennis Lehmkuhl, Ze’ev Rosenkranz, and Jennifer Nollar James EDITORS Anthony Duncan, Marco Giovanelli, Michel Janssen, Daniel J. Kennefick, and Issachar Unna ASSOCIATE & CONTRIBUTING EDITORS Emily de Araújo, Rudy Hirschmann, Nurit Lifshitz, and Barbara Wolff ASSISTANT EDITORS Princeton University Press 2018 Copyright © 2018 by The Hebrew University of Jerusalem Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA (Revised for volume 15) Einstein, Albert, 1879–1955. The collected papers of Albert Einstein. German, English, and French. Includes bibliographies and indexes. Contents: v. 1. The early years, 1879–1902 / John Stachel, editor — v. 2. The Swiss years, writings, 1900–1909 — — v. 15. The Berlin years, writings and correspondence, June 1925–May 1927 / Diana Kormos Buchwald... [et al.], editors. QC16.E5A2 1987 530 86-43132 ISBN 0-691-08407-6 (v.1) ISBN 978-0-691-17881-3 (v. 15) This book has been composed in Times. The publisher would like to acknowledge the editors of this volume for providing the camera-ready copy from which this book was printed. Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed in the United States of America 13579108642 INTRODUCTION TO VOLUME 15 The present volume covers a thrilling two-year period in twentieth-century physics, for during this time matrix mechanics—developed by Werner Heisenberg, Max Born, and Pascual Jordan—and wave mechanics, developed by Erwin Schrödinger, supplanted the earlier quantum theory. -
Einstein's Physical Strategy, Energy Conservation, Symmetries, And
Einstein’s Physical Strategy, Energy Conservation, Symmetries, and Stability: “but Grossmann & I believed that the conservation laws were not satisfied” April 12, 2016 J. Brian Pitts Faculty of Philosophy, University of Cambridge [email protected] Abstract Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein’s physical strategy and the particle physics deriva- tions compare? What energy-momentum complex(es) did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work relate to emerging knowledge (1911-14) of the canonical energy-momentum tensor and its translation-induced conservation? After initially using energy-momentum tensors hand-crafted from the gravitational field equa- ′ µ µ ν tions, Einstein used an identity from his assumed linear coordinate covariance x = Mν x to relate it to the canonical tensor. Usually he avoided using matter Euler-Lagrange equations and so was not well positioned to use or reinvent the Herglotz-Mie-Born understanding that the canonical tensor was conserved due to translation symmetries, a result with roots in Lagrange, Hamilton and Jacobi. Whereas Mie and Born were concerned about the canonical tensor’s asymmetry, Einstein did not need to worry because his Entwurf Lagrangian is modeled not so much on Maxwell’s theory (which avoids negative-energies but gets an asymmetric canonical tensor as a result) as on a scalar theory (the Newtonian limit). -
Fluctuation Theorem for Nonequilibrium Reactions
Journal of Chemical Physics 120 (2004) 8898-8905 Fluctuation theorem for nonequilibrium reactions Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems, Universit´eLibre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium A fluctuation theorem is derived for stochastic nonequilibrium reactions ruled by the chemical master equation. The theorem is expressed in terms of the generating and large-deviation functions characterizing the fluctuations of a quantity which measures the loss of detailed balance out of thermodynamic equilibrium. The relationship to entropy production is established and discussed. The fluctuation theorem is verified in the Schl¨oglmodel of far-from-equilibrium bistability. PACS numbers: 82.20.Uv; 05.70.Ln; 02.50.Ey I. INTRODUCTION Reacting systems can be driven out of equilibrium when in contact with several particle reservoirs or chemiostats generating fluxes of matter across the system. The fluxes are caused by the differences of chemical potentials between the chemiostats. Such an open system may be thought of as a reactor with inlets for reactants and an outlet for the products. In this case, the open system is driven out of equilibrium at the boundaries with the chemiostats. Even if detailed balance is satisfied for all the reactions in the bulk of the reactor, the nonequilibrium boundary conditions will break detailed balance for the reactions establishing the contact with the chemiostats. According to the second law of thermodynamics, the resulting nonequilibrium states are characterized by the production of entropy inside the open system. Above the nanoscale, the reactions taking place in the system can be described in terms of the numbers of molecules of the different species. -
Blackbody Radiation: (Vibrational Energies of Atoms in Solid Produce BB Radiation)
Independent study in physics The Thermodynamic Interaction of Light with Matter Mirna Alhanash Project in Physics Uppsala University Contents Abstract ................................................................................................................................................................................ 3 Introduction ......................................................................................................................................................................... 3 Blackbody Radiation: (vibrational energies of atoms in solid produce BB radiation) .................................... 4 Stefan-Boltzmann .............................................................................................................................................................. 6 Wien displacement law..................................................................................................................................................... 7 Photoelectric effect ......................................................................................................................................................... 12 Frequency dependence/Atom model & electron excitation .................................................................................. 12 Why we see colours ....................................................................................................................................................... 14 Optical properties of materials: .................................................................................................................................. -
Ludwig Boltzmann Was Born in Vienna, Austria. He Received His Early Education from a Private Tutor at Home
Ludwig Boltzmann (1844-1906) Ludwig Boltzmann was born in Vienna, Austria. He received his early education from a private tutor at home. In 1863 he entered the University of Vienna, and was awarded his doctorate in 1866. His thesis was on the kinetic theory of gases under the supervision of Josef Stefan. Boltzmann moved to the University of Graz in 1869 where he was appointed chair of the department of theoretical physics. He would move six more times, occupying chairs in mathematics and experimental physics. Boltzmann was one of the most highly regarded scientists, and universities wishing to increase their prestige would lure him to their institutions with high salaries and prestigious posts. Boltzmann himself was subject to mood swings and he joked that this was due to his being born on the night between Shrove Tuesday and Ash Wednesday (or between Carnival and Lent). Traveling and relocating would temporarily provide relief from his depression. He married Henriette von Aigentler in 1876. They had three daughters and two sons. Boltzmann is best known for pioneering the field of statistical mechanics. This work was done independently of J. Willard Gibbs (who never moved from his home in Connecticut). Together their theories connected the seemingly wide gap between the macroscopic properties and behavior of substances with the microscopic properties and behavior of atoms and molecules. Interestingly, the history of statistical mechanics begins with a mathematical prize at Cambridge in 1855 on the subject of evaluating the motions of Saturn’s rings. (Laplace had developed a mechanical theory of the rings concluding that their stability was due to irregularities in mass distribution.) The prize was won by James Clerk Maxwell who then went on to develop the theory that, without knowing the individual motions of particles (or molecules), it was possible to use their statistical behavior to calculate properties of a gas such as viscosity, collision rate, diffusion rate and the ability to conduct heat. -
Mathematical Genealogy of the Union College Department of Mathematics
Gemma (Jemme Reinerszoon) Frisius Mathematical Genealogy of the Union College Department of Mathematics Université Catholique de Louvain 1529, 1536 The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. Johannes (Jan van Ostaeyen) Stadius http://www.genealogy.math.ndsu.nodak.edu/ Université Paris IX - Dauphine / Université Catholique de Louvain Justus (Joost Lips) Lipsius Martinus Antonius del Rio Adam Haslmayr Université Catholique de Louvain 1569 Collège de France / Université Catholique de Louvain / Universidad de Salamanca 1572, 1574 Erycius (Henrick van den Putte) Puteanus Jean Baptiste Van Helmont Jacobus Stupaeus Primary Advisor Secondary Advisor Universität zu Köln / Université Catholique de Louvain 1595 Université Catholique de Louvain Erhard Weigel Arnold Geulincx Franciscus de le Boë Sylvius Universität Leipzig 1650 Université Catholique de Louvain / Universiteit Leiden 1646, 1658 Universität Basel 1637 Union College Faculty in Mathematics Otto Mencke Gottfried Wilhelm Leibniz Ehrenfried Walter von Tschirnhaus Key Universität Leipzig 1665, 1666 Universität Altdorf 1666 Universiteit Leiden 1669, 1674 Johann Christoph Wichmannshausen Jacob Bernoulli Christian M. von Wolff Universität Leipzig 1685 Universität Basel 1684 Universität Leipzig 1704 Christian August Hausen Johann Bernoulli Martin Knutzen Marcus Herz Martin-Luther-Universität Halle-Wittenberg 1713 Universität Basel 1694 Leonhard Euler Abraham Gotthelf Kästner Franz Josef Ritter von Gerstner Immanuel Kant -
The Philosophy and Physics of Time Travel: the Possibility of Time Travel
University of Minnesota Morris Digital Well University of Minnesota Morris Digital Well Honors Capstone Projects Student Scholarship 2017 The Philosophy and Physics of Time Travel: The Possibility of Time Travel Ramitha Rupasinghe University of Minnesota, Morris, [email protected] Follow this and additional works at: https://digitalcommons.morris.umn.edu/honors Part of the Philosophy Commons, and the Physics Commons Recommended Citation Rupasinghe, Ramitha, "The Philosophy and Physics of Time Travel: The Possibility of Time Travel" (2017). Honors Capstone Projects. 1. https://digitalcommons.morris.umn.edu/honors/1 This Paper is brought to you for free and open access by the Student Scholarship at University of Minnesota Morris Digital Well. It has been accepted for inclusion in Honors Capstone Projects by an authorized administrator of University of Minnesota Morris Digital Well. For more information, please contact [email protected]. The Philosophy and Physics of Time Travel: The possibility of time travel Ramitha Rupasinghe IS 4994H - Honors Capstone Project Defense Panel – Pieranna Garavaso, Michael Korth, James Togeas University of Minnesota, Morris Spring 2017 1. Introduction Time is mysterious. Philosophers and scientists have pondered the question of what time might be for centuries and yet till this day, we don’t know what it is. Everyone talks about time, in fact, it’s the most common noun per the Oxford Dictionary. It’s in everything from history to music to culture. Despite time’s mysterious nature there are a lot of things that we can discuss in a logical manner. Time travel on the other hand is even more mysterious. -
Shs-17-2018-14.Pdf
Science beyond borders Nobukata Nagasawa ORCID 0000-0002-9658-7680 Emeritus Professor of University of Tokyo [email protected] On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics Abstract Possible reasons are studied why Ladislas (Władysław) Natanson’s paper on the statistical theory of radiation, published in 1911 both in English and in the German translation, was not cited properly in the early history of quantum statistics by outstanding scientists, such as Arnold Sommerfeld, Paul Ehrenfest, Satyendra Nath Bose and Albert Einstein. The social and psychological aspects are discussed as back- ground to many so far discussions on the academic evaluation of his theory. In order to avoid in the future such Natansonian cases of very limited reception of valuable scientific works, it is pro- posed to introduce a digital tag in which all the information of PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Nagasawa, Nobukata 2018: On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics. Studia Historiae Scientiarum 17, pp. 391–419. Available online: https://doi.org/10.4467/2543702XSHS.18.014.9334. ARCHIVE RECEIVED: 13.06.2017 LICENSE POLICY ACCEPTED: 12.09.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Nobukata Nagasawa On social and psychological aspects of a negligible reception... relevant papers published so far should be automatically accu- mulated and updated. -
Fluctuation Theorems for Quantum Master Equations
PHYSICAL REVIEW E 73, 046129 ͑2006͒ Fluctuation theorems for quantum master equations Massimiliano Esposito* and Shaul Mukamel Department of Chemistry, University of California, Irvine, California 92697, USA ͑Received 17 November 2005; published 24 April 2006͒ A quantum fluctuation theorem for a driven quantum subsystem interacting with its environment is derived based solely on the assumption that its reduced density matrix obeys a closed evolution equation—i.e., a quantum master equation ͑QME͒. Quantum trajectories and their associated entropy, heat, and work appear naturally by transforming the QME to a time-dependent Liouville space basis that diagonalizes the instanta- neous reduced density matrix of the subsystem. A quantum integral fluctuation theorem, a steady-state fluc- tuation theorem, and the Jarzynski relation are derived in a similar way as for classical stochastic dynamics. DOI: 10.1103/PhysRevE.73.046129 PACS number͑s͒: 05.30.Ch, 05.70.Ln, 03.65.Yz I. INTRODUCTION restricted situations ͓24–27͔. A quantum exchange fluctua- tion theorem has also been considered in ͓28͔. Some inter- The fluctuation theorems and the Jarzynski relation are esting considerations of the quantum definition of work in some of a handful of powerful results of nonequilibrium sta- the previous studies have been made in ͓29͔. tistical mechanics that hold far from thermodynamic equilib- It should be noted that the dynamics of an isolated rium. Originally derived in the context of classical mechan- ͑whether driven or not͒ quantum system is unitary and its ics ͓1͔, the Jarzynski relation has been subsequently von Neumann entropy is time independent. Therefore, fluc- extended to stochastic dynamics ͓2͔. -
Fluctuation Theorem
Fluctuation Theorem Giovanni Gallavotti Fluctuation Theorem: a simple consequence of a time reversal symmetry; it deals with motions which are chaotic in the strong mathematical sense of being hyperbolic and transitive (ie are generated by smooth hyperbolic evolutions on a smooth compact surface (the “phase space”) and with a dense trajectory, also called Anosov systems) and “furthermore are time reversible”. In such systems any initial data, with the exception of a set of zero volume in phase space, have the same statistical properties in the sense that all smooth observables admit a time average independent of the initial data and expressed as an integral with respect to a probability distribution on phase space, called the ”natural stationary state”, or simply the “stationary state”. The theorem provides, asymptotically in the observation time, a quantitative and param- eter free relation between the stationary state probability of observing a value of the average entropy production rate and its opposite. Although there are quite a few examples of mechanical systems which are hyperbolic and transitive in the above mathematical sense, the fluctuation theorem ac- quires physical interest only in connection with the chaotic hypothesis. Under the latter general assumption, combined with time reversal, it pre- dicts a ”universal relation” between an entropy creation rate value and its opposite, accessible to simulations and possibly to laboratory experiments. The basis for the physical interpretation of the theorem as a property of stationary states in nonequilibrium statistical mechanics is developed here. Statistical Mechanics of Nonequilibrium Stationary States. Thermostats In nonequilibrium statistical mechanics the molecules of a system are sub- ject to nonconservative forces whose work is dissipated in the form of heat supplied to other systems kept at constant temperature: the ”thermostats” with which the system is in contact.