Applied Mathematics, 2013, 4, 23-33 http://dx.doi.org/10.4236/am.2013.47A006 Published Online July 2013 (http://www.scirp.org/journal/am) Fractional Versions of the Fundamental Theorem of Calculus Eliana Contharteze Grigoletto, Edmundo Capelas de Oliveira Department of Applied Mathematics, University of Campinas, Campinas, Brazil Email:
[email protected],
[email protected] Received April 27, 2013; revised May 27, 2013; accepted June 7, 2013 Copyright © 2013 Eliana Contharteze Grigoletto, Edmundo Capelas de Oliveira. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some prop- erties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the frac- tional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions. Keywords: Fractional Integral; Fractional Derivative; Riemann-Liouville Derivative; Liouville Derivative; Caputo Derivative; Weyl Derivative and Riesz Derivative 1. Introduction much research on its applications as there is on the cal- culus of integer order. Several applications in all areas of Fractional calculus, a popular name used to denote the knowledgement are collected, presented and discussed in calculus of non integer order, is as old as the calculus of different books as follow [7-12]. integer order as created independently by Newton and The main objective of this paper is to explain what is Leibniz.