Research Article 4589 Protein 4.1R binds to CLASP2 and regulates dynamics, organization and attachment of microtubules to the cell cortex Ana Ruiz-Saenz1, Jeffrey van Haren2, C. Laura Sayas1, Laura Rangel1, Jeroen Demmers3, Jaime Milla´n1, Miguel A. Alonso1, Niels Galjart2,*,` and Isabel Correas1,*,` 1Centro de Biologı´a Molecular Severo Ochoa and Departamento de Biologı´a Molecular, Consejo Superior de Investigaciones Cientı´ficas and Universidad Auto´noma de Madrid (CSIC and UAM), Nicola´s Cabrera 1, 28049 Madrid, Spain 2Department of Cell Biology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands 3Proteomics Center, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands *These authors contributed equally to this work `Authors for correspondence (
[email protected];
[email protected]) Accepted 17 July 2013 Journal of Cell Science 126, 4589–4601 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.120840 Summary The microtubule (MT) cytoskeleton is essential for many cellular processes, including cell polarity and migration. Cortical platforms, formed by a subset of MT plus-end-tracking proteins, such as CLASP2, and non-MT binding proteins such as LL5b, attach distal ends of MTs to the cell cortex. However, the mechanisms involved in organizing these platforms have not yet been described in detail. Here we show that 4.1R, a FERM-domain-containing protein, interacts and colocalizes with cortical CLASP2 and is required for the correct number and dynamics of CLASP2 cortical platforms. Protein 4.1R also controls binding of CLASP2 to MTs at the cell edge by locally altering GSK3 activity. Furthermore, in 4.1R-knockdown cells MT plus-ends were maintained for longer in the vicinity of cell edges, but instead of being tethered to the cell cortex, MTs continued to grow, bending at cell margins and losing their radial distribution.