Number Theory I, Lecture 16 Notes: Fourier and Mellin Transform, Theta

Total Page:16

File Type:pdf, Size:1020Kb

Number Theory I, Lecture 16 Notes: Fourier and Mellin Transform, Theta 18.785 Number theory I Fall 2015 Lecture #16 11/5/2015 16 The functional equation In the course of proving the Prime Number Theorem we showed that the Riemann zeta P −s function ζ(s) := n≥1 n has an Euler product and an analytic continuation to the right half-plane Re(s) > 0. We now want to complete the picture by deriving a functional equation that relates the values of ζ(s) to values of ζ(1 − s). This will also allow us to extend ζ(s) to a meromorphic function on C (holomorphic except for a simple pole at s = 1). Thus ζ(s) satisfies the three key properties that we would like any zeta function (or L-series) to have: • an Euler product; • an analytic continuation; • a functional equation. 16.1 Fourier transforms and Poisson summation A key ingredient to the functional equation is the Poisson summation formula, a tool from functional analysis that we now recall. 1 Definition 16.1. A Schwartz function on R is a complex-valued C -function f : R ! C that decays rapidly to zero; more precisely, we require that for all m; n 2 Z≥0 we have m (n) sup x f (x) < 1; x2R (n) where f denotes the nth derivative of f. The Schwartz space S(R) of all Schwartz functions on R is a C-vector space (and also a complete topological space, but its topology will not concern us here). It is closed under differentiation and products, and also under convolution: for any f; g 2 S(R) the function Z (f ∗ g)(x) := f(y)g(x − y)dy R is also in S(R). Examples of Schwartz functions include all compactly supported functions C1 functions, as well as the Gaussian g(x) := e−πx2 , which is the main case of interest to us. Definition 16.2. The Fourier transform of a Schwartz function f 2 S(R) is the function Z f^(y) := f(x)e−2πixydx; R which is also a Schwartz function. The Fourier transform is an invertible linear operator on the vector space S(R); the inverse transform of f^(y) is Z f(x) := f^(y)e+2πixydy: R The Fourier transform changes convolutions into products, and vice versa. We have f[∗ g = fg^^ and fgc = f^∗ g^; for all f; g 2 S(R). Lecture by Andrew Sutherland Theorem 16.3 (Poisson Summation Formula). For all f 2 S(R) we have the identity X X f(n) = f^(n): n2Z n2Z Proof. We first note that both sums are well defined; the rapid decay property of Schwartz functions guarantees absolute convergence. Let F (x) := P f(x + n). Then F is a n2Z periodic C1-function, so it has a Fourier series expansion X 2πinx F (x) = cne ; n2Z with Fourier coefficients Z 1 Z 1 Z −2πint X −2πiny −2πiny cn = F (x)e dt = f(x + m)e dy = f(x)e dy = f^(n): 0 0 m2Z R We then note that X X X X f(n) = lim F (x) = lim f^(n)e2πinx = lim f^(n)e2πinx = f^(n); x!0 x!0 x!0 n2Z n2Z n2Z n2Z where we have used f 2 S(R) to justify interchanging the limit and sum (alternatively, one can view the limit as a uniformly converging sequence of functions). We now note that the Gaussian function g(x) := e−πx2 is its own Fourier transform. Lemma 16.4. Let g(x) := e−πx2 . Then g^(y) = g(y). Proof. We have +1 +1 Z 2 Z 2 2 2 g^(y) = e−πx e−2πixydx = e−π(x +2ixy+y −y )dx −∞ −∞ +1 +1 +iy 2 Z 2 2 Z 2 = e−πy e−π(x+iy) dx = e−πy e−π(x+iy) dx −∞ −∞+iy +1 2 Z 2 2 = e−πy e−πt dt = e−πy = g(y): −∞ We used a contour integral of the holomorphic function f(x + iy) = e−π(x+iy)2 along the rectangular contour −r ! r ! r + i ! −r + i ! −r with r ! 1 to shift the integral up by i in the second line: the integral along the vertical sides vanishes as r ! 1, so the contributions form the horizontal sides must be equal and opposite. We used the change of R +1 −πt2 −πt2 variable t = x + iy to get the third line, and note that −∞ e dx = 1, because e is a probability distribution (or insert your favorite proof of this fact here). × p p p Corollary 16.5. For any a 2 R , if Ga(x) := g(x= a) then Gba(y) = ag(y a). p Proof. Proceeding as in the first line of the lemma and substituting x ! ax yields Z +1 Z +1 p −πx2=a −2πixy p −π(x2+2ixy a+y2a−y2a) Gba(y) = e e dx = a e dx −∞ −∞ +1 p 2 Z p 2 p p = ae−πy a · e−π(x+iy a) dx = ag(y a) · 1: −∞ 18.785 Fall 2015, Lecture #16, Page 2 16.1.1 Jacobi's theta function We now define the theta function1 X 2 Θ(τ) := eπin τ : n2Z The sum is absolutely convergent for Im τ > 0 and thus defines a holomorphic function on the upper half plane. It is easy to see that Θ(τ) is periodic modulo 2, that is Θ(τ + 2) = Θ(τ); but it it also satisfies another functional equation. Lemma 16.6. For all y 2 R>0 we have p Θ(i=y) = yΘ(iy) Proof. Plugging τ = iy into Θ(τ) yields X 2 Θ(iy) = e−πn y: n2Z −πn2 =y p −πn2 y Applying Corollary 16.5 to Gy(n) = e , we have Gby(n) = ye , and Poisson summation (Theorem 16.3) yields X 1 1 X 1 Θ(iy) = p Gby(n) = p Gy(n) = p Θ(i=y) : y y y n2Z n2Z The lemma follows. 16.1.2 Euler's gamma function You are probably familiar with the gamma function Γ(s), which plays a key role in the functional equation of not only the Riemann zeta function but many of the more general zeta functions and L-series we wish to consider. Here we recall some of its analytic properties. We begin with the definition of Γ(s) as a Mellin transform. Definition 16.7. The Mellin transform of a function f : R>0 ! C is the complex function defined by Z 1 M(f)(s) := f(t)ts−1dt; 0 whenever this integral converges. It is holomorphic on Re s 2 (a; b) for any interval (a; b) R 1 σ−1 where the integral 0 jf(t)jt dt converges for all σ 2 (a; b). Definition 16.8. The Gamma function Z 1 Γ(s) := M(e−t)(s) = e−tts−1dt; 0 1The function Θ(τ) we define here is a special case of one of four parameterized families of theta functions Θi(z : τ) originally defined by Jacobi for i = 0; 1; 2; 3, which play an important role in the theory of elliptic functions and modular forms; in terms of Jacobi's notation, Θ(τ) = Θ3(0; τ). 18.785 Fall 2015, Lecture #16, Page 3 −t R 1 −t σ−1 is the Mellin transform of e . Since 0 je jt dt converges for all σ > 0, the integral defines a holomorphic function on Re(s) > 0. Integration by parts yields s −t 1 Z 1 t e 1 −t s Γ(s + 1) Γ(s) = + e t dt = ; s 0 s 0 s R 1 −t thus Γ(s) has a simple pole at s = 0 with residue 1 (since Γ(1) = 0 e dt = 1), and Γ(s + 1) = sΓ(s) (1) for Re(s) > 0. Equation (1) allows us to extend Γ(s) to a meromorphic function on C with simple poles at s = 0; −1; −2;:::, and no other poles. An immediate consequence of (1) is that for integers n > 0 we have Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1) = n(n − 1)(n − 2) ··· 2 · 1 · Γ(1) = n!; thus the gamma function can be viewed as an extension of the factorial function. The gamma function satisfies many useful identities in addition to (1), including the following. Theorem 16.9 (Euler's Reflection Formula). We have π Γ(s)Γ(1 − s) = : sin(πs) as meromorphic functions on C with simple poles at each integer s 2 Z. Proof. See [1, x6 Thm. 1.4] 1 1 2 1 p Example 16.10. Putting s = 2 in the reflection formula yields Γ( 2 ) = π, so Γ( 2 ) = π. Corollary 16.11. The function Γ(s) has no zeros on C. Proof. Suppose Γ(s0) = 0. The RHS of Euler's reflection formula is never zero, since sin(πs) has no poles, so Γ(1 − s) must have a pole at s0. Therefore 1 − s0 2 Z≤0, equivalently, s0 2 Z≥1, but Γ(s) = (s − 1)! =6 0 for s 2 Z≥1. 16.1.3 Completing the zeta function Let us now consider the function F (s) := π−sΓ(s)ζ(2s); which is a meromorphic on C and holomorphic on Re(s) > 1=2. We will restrict our attention P −2s the this region, in which the sum n≥1 n defining ζ(2s) is absolutely convergent. We have X X Z 1 F (s) = (πn2)−sΓ(s) = (πn2)−sts−1e−tdt; n≥1 n≥1 0 and the substitution t = πn2 y with dt = πn2dy yields Z 1 Z 1 X 2 X 2 F (s) = (πn2)−s(πn2y)s−1e−πn yπn2dy = ys−1e−πn ydy: n≥1 0 n≥1 0 18.785 Fall 2015, Lecture #16, Page 4 The sum is absolutely convergent, so by the Fubini-Tonelli theorem, we can swap the sum and the integral to obtain Z 1 X 2 F (s) = ys−1 e−πn ydy: 0 n≥1 We have Θ(iy) = P e−πn2y = 1 + 2 P e−πn2y, thus n2Z n≥1 1 Z 1 F (s) = ys−1(Θ(iy) − 1)dy 2 0 1 Z 1 1 Z 1 = ys−1Θ(iy)dy − + ys−1(Θ(iy) − 1)dy 2 0 s 1 1 We now focus on the first integral.
Recommended publications
  • Applications of the Mellin Transform in Mathematical Finance
    University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2018 Applications of the Mellin transform in mathematical finance Tianyu Raymond Li Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Li, Tianyu Raymond, Applications of the Mellin transform in mathematical finance, Doctor of Philosophy thesis, School of Mathematics and Applied Statistics, University of Wollongong, 2018. https://ro.uow.edu.au/theses1/189 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • APPENDIX. the MELLIN TRANSFORM and RELATED ANALYTIC TECHNIQUES D. Zagier 1. the Generalized Mellin Transformation the Mellin
    APPENDIX. THE MELLIN TRANSFORM AND RELATED ANALYTIC TECHNIQUES D. Zagier 1. The generalized Mellin transformation The Mellin transformation is a basic tool for analyzing the behavior of many important functions in mathematics and mathematical physics, such as the zeta functions occurring in number theory and in connection with various spectral problems. We describe it first in its simplest form and then explain how this basic definition can be extended to a much wider class of functions, important for many applications. Let ϕ(t) be a function on the positive real axis t > 0 which is reasonably smooth (actually, continuous or even piecewise continuous would be enough) and decays rapidly at both 0 and , i.e., the function tAϕ(t) is bounded on R for any A R. Then the integral ∞ + ∈ ∞ ϕ(s) = ϕ(t) ts−1 dt (1) 0 converges for any complex value of s and defines a holomorphic function of s called the Mellin transform of ϕ(s). The following small table, in which α denotes a complex number and λ a positive real number, shows how ϕ(s) changes when ϕ(t) is modified in various simple ways: ϕ(λt) tαϕ(t) ϕ(tλ) ϕ(t−1) ϕ′(t) . (2) λ−sϕ(s) ϕ(s + α) λ−sϕ(λ−1s) ϕ( s) (1 s)ϕ(s 1) − − − We also mention, although we will not use it in the sequel, that the function ϕ(t) can be recovered from its Mellin transform by the inverse Mellin transformation formula 1 C+i∞ ϕ(t) = ϕ(s) t−s ds, 2πi C−i∞ where C is any real number.
    [Show full text]
  • Generalizsd Finite Mellin Integral Transforms
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2012, 4 (2):1117-1134 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Generalizsd finite mellin integral transforms S. M. Khairnar, R. M. Pise*and J. N. Salunke** Deparment of Mathematics, Maharashtra Academy of Engineering, Alandi, Pune, India * R.G.I.T. Versova, Andheri (W), Mumbai, India **Department of Mathematics, North Maharastra University, Jalgaon-India ______________________________________________________________________________ ABSTRACT Aim of this paper is to see the generalized Finite Mellin Integral Transforms in [0,a] , which is mentioned in the paper , by Derek Naylor (1963) [1] and Lokenath Debnath [2]..For f(x) in 0<x< ∞ ,the Generalized ∞ ∞ ∞ ∞ Mellin Integral Transforms are denoted by M − [ f( x ), r] = F− ()r and M + [ f( x ), r] = F+ ()r .This is new idea is given by Lokenath Debonath in[2].and Derek Naylor [1].. The Generalized Finite Mellin Integral Transforms are extension of the Mellin Integral Transform in infinite region. We see for f(x) in a a a a 0<x<a, M − [ f( x ), r] = F− ()r and M + [ f( x ), r] = F+ ()r are the generalized Finite Mellin Integral Transforms . We see the properties like linearity property , scaling property ,power property and 1 1 propositions for the functions f ( ) and (logx)f(x), the theorems like inversion theorem ,convolution x x theorem , orthogonality and shifting theorem. for these integral transforms. The new results is obtained for Weyl Fractional Transform and we see the results for derivatives differential operators ,integrals ,integral expressions and integral equations for these integral transforms.
    [Show full text]
  • Extended Riemann-Liouville Type Fractional Derivative Operator with Applications
    Open Math. 2017; 15: 1667–1681 Open Mathematics Research Article P. Agarwal, Juan J. Nieto*, and M.-J. Luo Extended Riemann-Liouville type fractional derivative operator with applications https://doi.org/10.1515/math-2017-0137 Received November 16, 2017; accepted November 30, 2017. Abstract: The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modied Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by dening the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox’s H-function are also presented. Keywords: Gamma function, Extended beta function, Riemann-Liouville fractional derivative, Hypergeomet- ric functions, Fox H-function, Generating functions, Mellin transform, Integral representations MSC: 26A33, 33B15, 33B20, 33C05, 33C20, 33C65 1 Introduction Extensions and generalizations of some known special functions are important both from the theoretical and applied point of view. Also many extensions of fractional derivative operators have been developed and applied by many authors (see [2–6, 11, 12, 19–21] and [17, 18]). These new extensions have proved to be very useful in various elds such as physics, engineering, statistics, actuarial sciences, economics, nance, survival analysis, life testing and telecommunications. The above-mentioned applications have largely motivated our present study. The extended incomplete gamma functions constructed by using the exponential function are dened by z p α, z; p tα−1 exp t dt R p 0; p 0, R α 0 (1) t 0 ( ) = − − ( ( ) > = ( ) > ) and S ∞ p Γ α, z; p tα−1 exp t dt R p 0 (2) t z ( ) = − − ( ( ) ≥ ) with arg z π, which have been studiedS in detail by Chaudhry and Zubair (see, for example, [2] and [4]).
    [Show full text]
  • Prime Number Theorem
    Prime Number Theorem Bent E. Petersen Contents 1 Introduction 1 2Asymptotics 6 3 The Logarithmic Integral 9 4TheCebyˇˇ sev Functions θ(x) and ψ(x) 11 5M¨obius Inversion 14 6 The Tail of the Zeta Series 16 7 The Logarithm log ζ(s) 17 < s 8 The Zeta Function on e =1 21 9 Mellin Transforms 26 10 Sketches of the Proof of the PNT 29 10.1 Cebyˇˇ sev function method .................. 30 10.2 Modified Cebyˇˇ sev function method .............. 30 10.3 Still another Cebyˇˇ sev function method ............ 30 10.4 Yet another Cebyˇˇ sev function method ............ 31 10.5 Riemann’s method ...................... 31 10.6 Modified Riemann method .................. 32 10.7 Littlewood’s Method ..................... 32 10.8 Ikehara Tauberian Theorem ................. 32 11ProofofthePrimeNumberTheorem 33 References 39 1 Introduction Let π(x) be the number of primes p ≤ x. It was discovered empirically by Gauss about 1793 (letter to Enke in 1849, see Gauss [9], volume 2, page 444 and Goldstein [10]) and by Legendre (in 1798 according to [14]) that x π(x) ∼ . log x This statement is the prime number theorem. Actually Gauss used the equiva- lent formulation (see page 10) Z x dt π(x) ∼ . 2 log t 1 B. E. Petersen Prime Number Theorem For some discussion of Gauss’ work see Goldstein [10] and Zagier [45]. In 1850 Cebyˇˇ sev [3] proved a result far weaker than the prime number theorem — that for certain constants 0 <A1 < 1 <A2 π(x) A < <A . 1 x/log x 2 An elementary proof of Cebyˇˇ sev’s theorem is given in Andrews [1].
    [Show full text]
  • Fourier-Type Kernels and Transforms on the Real Line
    FOURIER-TYPE KERNELS AND TRANSFORMS ON THE REAL LINE GOONG CHEN AND DAOWEI MA Abstract. Kernels of integral transforms of the form k(xy) are called Fourier kernels. Hardy and Titchmarsh [6] and Watson [15] studied self-reciprocal transforms with Fourier kernels on the positive half-real line R+ and obtained nice characterizing conditions and other properties. Nevertheless, the Fourier transform has an inherent complex, unitary structure and by treating it on the whole real line more interesting properties can be explored. In this paper, we characterize all unitary integral transforms on L2(R) with Fourier kernels. Characterizing conditions are obtained through a natural splitting of the kernel on R+ and R−, and the conversion to convolution integrals. A collection of concrete examples are obtained, which also include "discrete" transforms (that are not integral transforms). Furthermore, we explore algebraic structures for operator-composing integral kernels and identify a certain Abelian group associated with one of such operations. Fractional powers can also be assigned a new interpretation and obtained. 1. Introduction The Fourier transform is one of the most powerful methods and tools in mathematics (see, e.g., [3]). Its applications are especially prominent in signal processing and differential equations, but many other applications also make the Fourier transform and its variants universal elsewhere in almost all branches of science and engineering. Due to its utter significance, it is of interest to investigate the Fourier transform
    [Show full text]
  • Laplace Transform - Wikipedia, the Free Encyclopedia 01/29/2007 07:29 PM
    Laplace transform - Wikipedia, the free encyclopedia 01/29/2007 07:29 PM Laplace transform From Wikipedia, the free encyclopedia In mathematics, the Laplace transform is a powerful technique for analyzing linear time-invariant systems such as electrical circuits, harmonic oscillators, optical devices, and mechanical systems, to name just a few. Given a simple mathematical or functional description of an input or output to a system, the Laplace transform provides an alternative functional description that often simplifies the process of analyzing the behavior of the system, or in synthesizing a new system based on a set of specifications. The Laplace transform is an important concept from the branch of mathematics called functional analysis. In actual physical systems the Laplace transform is often interpreted as a transformation from the time- domain point of view, in which inputs and outputs are understood as functions of time, to the frequency- domain point of view, where the same inputs and outputs are seen as functions of complex angular frequency, or radians per unit time. This transformation not only provides a fundamentally different way to understand the behavior of the system, but it also drastically reduces the complexity of the mathematical calculations required to analyze the system. The Laplace transform has many important applications in physics, optics, electrical engineering, control engineering, signal processing, and probability theory. The Laplace transform is named in honor of mathematician and astronomer Pierre-Simon Laplace, who used the transform in his work on probability theory. The transform was discovered originally by Leonhard Euler, the prolific eighteenth-century Swiss mathematician. See also moment-generating function.
    [Show full text]
  • Stochastic Dynamic Analysis of Structures with Fractional Viscoelastic Constitutive Laws
    Universit`adegli Studi di Palermo SCUOLA POLITECNICA Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali Dottorato in Ingegneria Civile e Ambientale Ingegneria delle Strutture ciclo XXV Coor.: Prof. Orazio Giuffre` PH.D. THESIS Stochastic dynamic analysis of structures with fractional viscoelastic constitutive laws Candidato: Relatori: Ing. Francesco Paolo Pinnola Ch.mo Prof. Mario Di Paola Ch.mo Prof. Pol D. Spanos (Rice University) S.S.D. ICAR/08 Stochastic dynamic analysis of structures with fractional viscoelastic constitutive laws Ph.D thesis submitted to the University of Palermo by Francesco Paolo Pinnola Dipartimento di Ing. Civile Ambientale, Aerospaziale, dei Materiali Università degli Studi di Palermo Scuola Politecnica Viale delle Scienze, Ed. 8 - 90128 Palermo FRANCESCO PAOLO PINNOLA Palermo, December 2014 e-mail:[email protected] e-mail:[email protected] Thesis of the Ph.D. course in Structural Engineering Dipartimento di Ingegneria Civile Ambientale, Aerospaziale, dei Materiali Università degli Studi di Palermo Scuola Politecnica Viale delle Scienze, Ed.8 - 90128 Palermo, ITALY Written in LATEX Examples and figures made with Wolfram Mathematica© “Quelli che s’innamorano di pratica, sanza scienza, son come ’l nocchiere, ch’entra in navilio sanza timone o bussola, che mai ha certezza dove si vada. Sempre la pratica dev’esser edificata sopra la bona teorica...”1 1Leonardo Da Vinci (1452-1519). Contents Preface xi Introduction xiii Notation xxi 1 Special functions and integral transforms 1 1.1 Special functions ........................... 1 1.1.1 Euler gamma function .................... 1 1.1.2 Mittag-Leffler function .................... 5 1.1.3 Wright function ........................ 7 1.2 Bessel functions ............................ 7 1.2.1 Functions of the first and the second kind ........
    [Show full text]
  • The Mellin Transform Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez
    The Mellin Transform Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez To cite this version: Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez. The Mellin Transform. The Transforms and Applications Handbook, 1995, 978-1420066524. hal-03152634 HAL Id: hal-03152634 https://hal.archives-ouvertes.fr/hal-03152634 Submitted on 25 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Transforms and Applications Handbook Chapter 12 The Mellin Transform 1 Jacqueline Bertrand2 Pierre Bertrand3 Jean-Philippe Ovarlez 4 1Published as Chapter 12 in "The Transform and Applications Handbook", Ed. A.D.Poularikas , Volume of "The Electrical Engineering Handbook" series, CRC Press inc, 1995 2CNRS and University Paris VII, LPTM, 75251 PARIS, France 3ONERA/DES, BP 72, 92322 CHATILLON, France 4id. Contents 1 Introduction 1 2 The classical approach and its developments 3 2.1 Generalities on the transformation . 3 2.1.1 Definition and relation to other transformations . 3 2.1.2 Inversion formula . 5 2.1.3 Transformation of distributions. 8 2.1.4 Some properties of the transformation. 11 2.1.5 Relation to multiplicative convolution . 13 2.1.6 Hints for a practical inversion of the Mellin transformation .
    [Show full text]
  • CONTINUATIONS and FUNCTIONAL EQUATIONS the Riemann Zeta
    CONTINUATIONS AND FUNCTIONAL EQUATIONS The Riemann zeta function is initially defined as a sum, X ζ(s) = n−s; Re(s) > 1: n≥1 The first part of this writeup gives Riemann's argument that the completion of zeta, Z(s) = π−s=2Γ(s=2)ζ(s); Re(s) > 1 has a meromorphic continuation to the full s-plane, analytic except for simple poles at s = 0 and s = 1, and the continuation satisfies the functional equation Z(s) = Z(1 − s); s 2 C: The continuation is no longer defined by the sum. Instead, it is defined by a well- behaved integral-with-parameter. Essentially the same ideas apply to Dirichlet L-functions, X L(χ, s) = χ(n)n−s; Re(s) > 1: n≥1 The second part of this writeup will give their completion, continuation and func- tional equation. Contents Part 1. RIEMANN ZETA: MEROMORPHIC CONTINUATION AND FUNCTIONAL EQUATION 2 1. Fourier transform 2 2. Fourier transform of the Gaussian and its dilations 2 3. Theta function 3 4. Poisson summation; the transformation law of the theta function 3 5. Riemann zeta as the Mellin transform of theta 4 6. Meromorphic continuation and functional equation 5 Part 2. DIRICHLET L-FUNCTIONS: ANALYTIC CONTINUATION AND FUNCTIONAL EQUATION 7 7. Theta function of a primitive Dirichlet character 7 8. A Poisson summation result 7 9. Gauss sums of primitive Dirichlet characters 8 10. Dirichlet theta function transformation law 10 11. Functional equation 11 12. Quadratic root numbers 12 1 2 CONTINUATIONS AND FUNCTIONAL EQUATIONS Part 1. RIEMANN ZETA: MEROMORPHIC CONTINUATION AND FUNCTIONAL EQUATION 1.
    [Show full text]
  • 02MA0555 Subject Name: Special Functions-II M.Sc. Year-II (Sem-4)
    Syllabus for Master of Science Mathematics Subject Code: 02MA0555 Subject Name: Special Functions-II M.Sc. Year-II (Sem-4) Objective: This course aims at providing essential ideas of integral transforms. Numerous problems, which are not easily solvable, can be properly dealt with integral transform methods. Credits Earned: 5 Credits Course Outcomes: After completion of this course, student will be able to Understand concept of Fourier series, Fourier Integral and Fourier transform. Analyze the properties of Hankel transform, Mellin Transform and Z-transform. Perform operations with orthogonal polynomials, Legendre’s polynomial and Laguerre polynomial with their differential equations along with the corresponding recurrence formulas. Demonstrate their understanding of how physical phenomena are modeled using special functions. Explain the applications of Integral transforms and solving problems using transform method. Pre-requisite of course: Real Analysis, Complex Analysis, Differential Equations Teaching and Examination Scheme Tutorial/ Practical Teaching Scheme (Hours) Theory Marks Marks Total Credits Mid Term ESE Internal Viva Marks Theory Tutorial Practical Sem work (E) (I) (V) (M) (TW) 4 2 - 5 50 30 20 25 25 150 Contents: Unit Topics Contact Hours 1 Fourier transforms and their applications: 15 Introduction, Fourier series, Fourier integral formulas, Fourier transform of generalized functions, Basic properties of Fourier transform, Applications of Fourier transform. Syllabus for Master of Science Mathematics 2 Hankel Transforms and their applications 9 Hankel transforms and examples, Operational properties of Hankel transform, Application of Hankel transform to PDE 3 Mellin Transform and Z-trasnfrom 12 Introduction to Mellin transform, Operational properties of Mellin transform, Application of Mellin Transforms, Introduction to Z-transform, basic Operational properties of Z-transform, Inverse Z-transform and examples.
    [Show full text]
  • Weierstrass Transforms
    JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 GENERALIZED PROPERTIES ON MELLIN - WEIERSTRASS TRANSFORMS Amarnath Kumar Thakur Department of Mathematics Dr.C.V.Raman University, Bilaspur, State, Chhattisgarh Email- [email protected] Gopi Sao Department of Mathematics Dr.C.V.Raman University, Bilaspur, State, Chhattisgarh Email- [email protected] Hetram Suryavanshi Department of Mathematics Dr.C.V.Raman University, Bilaspur, State, Chhattisgarh Email- [email protected] Abstract- In the present paper, we introduce definite integral transforms in operational calculus for the generalized properties on Mellin- Weierstrass associated transforms. These results are derived from the MW Properties These formulas may be considered as promising approaches in expressing in fractional calculus. Keywords – Laplace Transform , Convolution Transform Mellin Transforms , Weierstrass Transforms I. Introduction In mathematical terms the Fourier and Laplace transformations were introduced to solve physical problems. In fact, the first event of change is found by Reiman in which he used to study the famous zeta function. The Finnish mathematician Hjalmar Mellin (1854-1933), who was the first to give an orderly appearance change and its reversal,working in the theory of special functions, he developed applications towards a solution of hypergeometric differential equations and derivation of asymptotic expansions. Mellin's contribution gives a major place to the theory of analytic functions and essentially depends on the Cauchy theorem and the method of residuals. Actually, the Mellin transformation can also be placed in another framework, in which some cases is more closely related to Volume XIII, Issue IX, SEPTEMBER 2020 Page No: 98 JAC : A JOURNAL OF COMPOSITION THEORY ISSN : 0731-6755 original ideas of Reimann's original.In addition to its use in mathematics, Mellin's transformation has been applied in many different ways and areas of Physics and Engineering.
    [Show full text]