<<

Available online a t www.scholarsresearchlibrary.com

Scholars Research Library

Archives of Applied Science Research, 2012, 4 (2):1117-1134 (http://scholarsresearchlibrary.com/archive.html)

ISSN 0975-508X CODEN (USA) AASRC9

Generalizsd finite mellin integral transforms

S. M. Khairnar, R. M. Pise*and J. N. Salunke**

Deparment of Mathematics, Maharashtra Academy of Engineering, Alandi, Pune, India * R.G.I.T. Versova, Andheri (W), Mumbai, India **Department of Mathematics, North Maharastra University, Jalgaon-India ______

ABSTRACT

Aim of this paper is to see the generalized Finite Mellin Integral Transforms in [0,a] , which is mentioned in the paper , by Derek Naylor (1963) [1] and Lokenath Debnath [2]..For f(x) in 0

Keywords: Integral transforms, Mellin integral transform, Finite Mellin integral transform. AMS MTHEMATICS CLASSIFICATION- 44A10 (200), 47D03(2001) ______

INTRODUCTION

In the theory of Integral Transform , Mellin Integral Transform has presented a direct and systematic technique, for resolution of certain types of classical boundary and initial value problems .To be successful the transform must be adopted to the form of differential operators to be eliminated as well as to the range of interest and associated boundary conditions. These transforms are the extension of the Mellin Integral Transform and have a similar inversion formulae. These transforms are suited to regions bounded by the natural coordinate surfaces of a cylindrical or spherical coordinate system and apply to finite or infinite regions bounded internally.

1117 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______Historically ,Riemann (1876) first recognized the Mellin transform in the famous memoir on prime numbers, Its explicit formulation was given by Cahen (1894) . Almost simultaneously Mellin (1896, 1902) gave an elaborate discussion of the Mellin transform and its inversion formula

A method is prescribed for generating such transforms . .The method is adopted for the GMIT in [0, ∞ ] for the infinite interval x>0 and the result is modified for a finite interval 0

2.2.2. Basic Results The generalized Mellin integral transform of a function f(x) in 00 M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x The inverse of this transform is ∞1 −∞ 1 − ∞ M [ xf ),( r] = F 1 r)( =f(x )= x r M )( drr − − π ∫ − 2 i L ∞ ∞ Where L is the line Re p=c and M − [ xf ),( r] = F− r)( is regular function on the strip Re( p) < γ with c< γ . On the other hand , if the derivative of f(x) is prescribed at r=a , it is convenient define the associated integral transform by ∞ 2r ∞ ∞ − a = = r 1 + , r>0 M + [ xf ),( r] F+ r)( ∫ (x r+1 )() dxxf 0 x The inverse of this transform is ∞−1 ∞−1 1 − ∞ M [ xf ),( r] = F r)( =f(x )= x r M )( drr + + π ∫ + 2 i L

∞−1 ∞−1 Where L is the line Re p=-c and M + [ xf ),( r] = F+ r)( is regular function on the strip Re( p) < γ with c< γ . If the range of the integral is finite, then we define the generalized Mellin integral transform by a 2r − a a = a = r 1 − , where Re(p)< γ (1) M − [ xf ),( r] F− r)( ∫ (x r+1 )() dxxf 0 x

The corresponding inverse transform is −1 −1 1 − M a [ xf ),( r] = F a r)( =f(x )= x r M a )( drr (2) − − π ∫ − 2 i L

Similarly we define the generalized finite Mellin integral transform pair by a 2r − a a = a = r 1 + ,r>0 (3) M + [ xf ),( r] F+ r)( ∫ (x r+1 )() dxxf 0 x The inverse of the corresponding transform is given by

1118 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

−1 −1 1 − ∞ M a [ xf ),( r] = F a r)( =f(x)= x r M )( drr (4) + + π ∫ − 2 i L where line L is from c-i a to c +i a

2.2.3.Lemma 2.2.3.1. Linearity Property The GFMIT of a function f(x) in 0

a a a M − [α xf )( + βg x),( r] =α M − xf ),([ r],+ β M − g x),([ r] (5a)

a a a Similarly M + [α xf )( + βg x),( r] =α M + xf ),([ r],+ β M + g x),([ r] (5b)

2.2.3.2. Scaling Property The GFMIT of a function f(x) in 0

a ab Similarly M + ([ bxf ), r]= M + [ tf ),( r] (6b)

2.2.3.3. Power Property The GFMIT of a function f(x) in 0

1119 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

an 1 1 2r −1 a n n r−1 a 1 n M − [ (xf ), r]= (t ) − ) tf )( t dt ∫ 1 n 0 (t n ) r+1 an r 2r 1 −1 a = n − ∫ (t r ) )( dttf n +1 0 t n

1 an r = M − tf ),([ ] n n

a n 1 an r M − [ (xf ), r]= M − tf ),([ ] (7a) n n

a n 1 an r Similarly M + [ (xf ), r]= M + tf ),([ ] (7b) n n 2.2.4. Theorems 2.2.4.1. Convolution Theorem The GFMIT of a function f(x) in 0

+iac 1 − Similarly M a [ ()( tgxf − x), r]= x r M a [ xf ),( r]M a ([ tg − x), ]drr (8b) + π ∫ + + 2 i −iac 2.2.4.2. Orthogonality ( Parsevals Theorem) The GFMIT of a function f(x) in 0

+iac 1 − Similarly M a [ gxf x),()( r]= x r M a xf ),([ r]M a g x),([ ]drr (9b) + π ∫ + + 2 i −iac 2.2.4.3 .Shifting Theorem The GFMIT of a function f(x) in 0

a n = a + M − [ xfx ),( r] M − [ xf ),( r n]

a 2r − a Proof If a = a = r 1 − , then M − [ xf ),( r] F− r)( ∫ (x r+1 )() dxxf 0 x

1120 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

a 2r − a a n = r 1 − n M − [ xfx ),( r] ∫ (x r+1 ) )( dxxfx 0 x a 2r −+ a = nr 1 − ∫ (x nr +− 1 )() dxxf 0 x = a + M − [ xf ),( r n]

a n a M − [ xfx ),( r] = M − [ xf ),( r + n] (10a)

Similarly a n = a + (10b) M + [ xfx ),( r] M + [ xf ),( r n]

2.2.5. Propositions 1 1 2.2.5.1. Proposition for the function f ( ) x x The GFMIT in [0,a] is a 2r − a a = a = r 1 − , where Re(p)< γ , then M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x a 2r 1 1 − a 1 1 a = r 1 − M − [ f ( ), r] ∫ (x r+1 ) f ( )dx x x 0 x x x 1 1 − dt 1 substitute =t ,x= , dx= . if x=0 the t= ∞ and if x=a then t= x t t 2 a

1 a 2r 1 1 1 − a − dt a = r 1 − M − [ f ( ), r] ∫ (( ) )tf t)(( 2 ) x x t 1 r+1 t ∞ ( ) t ∞ 2r +− a dt = r 1 − ∫ (t r−− 1 tf )(() ) 1 t t a ∞ 2r − a = r − ∫ (t −r )() dttf 1 t a ∞ 2r −+− a = r 11 − ∫ (t r +−− 11 )() dttf 1 t a ∞ 2r 1 1 −−− a a = r 1)1( − M − [ f ( ), r] ∫ (t r ++− 1)1( ) )( dttf x x 1 t a ∞ 2r a 1 1 ∞ − + r −−− 1)1( − a M − [ f ( ), r] = M 1 [ tf ),( r ]1 = (t ++− ) )( dttf (11a) −, ∫ r 1)1( x x a 1 t a

1121 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

∞ 2r a 1 1 ∞ − + r −−− 1)1( + a Similarly M + [ f ( ), r] = M 1 tf ),([ r ]1 = (t ++− ) )( dttf (11b) +, ∫ r 1)1( x x a 1 t a 1 Here, 11a and 11b are the new integral transforms in to ∞ a

2.2.5.2. Proposition for the function (logx)f(x) The GFMIT in [0, a] is a 2r − a a = a = r 1 − , where Re(p)< γ , M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x

For a=1 , we have the particular case of (1) 1 − 1 1 = 1 = r 1 − , then M − xf ),([ r] F− r)( ∫ (x r+1 ) )( dxxf 0 x 1 − 1 1 = r 1 − M − [(log ) xfx ),( r] ∫ (x r+1 )(log )() dxxfx 0 x 1 2r − a = r 1 − , ∫ [(log )xx (log x) r+1 ) )( dxxf 0 x 1 d − d −− = ∫ [ (x r 1 ) + (x r 1 )() dxxf 0 dr dr 1 d − 1 = r 1 + ∫ (x r+1 ) )( dxxf dr 0 x

d 1 d 1 = M + xf ),([ r] = F+ r)( dr dr

1 d 1 d 1 M − [(log xfx ),() r]= M + xf ),([ r] = F+ r)( (12a) dr dr

1 1 d 1 1 d 1 Similarly M + [(log xfx ),() r] = M + xf ),([ r] = F+ r)( M − xf ),([ r] = F− r)( (12b) dr dr 2.2.6. GFMIT of Differential Operators The GFMIT in [0, a] is a 2r − a a = a = r 1 − , where Re(p)< γ ,then M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x a 2r d − a d a = r 1 − M − [( x ) xf ),( r] ∫ (x r+1 )( x )() dxxf dx 0 x dx a 2r − a = r 1 − ∫ (x r+1 )xf )(' dxx 0 x a a 2r = r − ∫ (x r f )(') dxx 0 x

1122 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

2r a 2r a − a = r − a - r 1 − − [( x r xf )]() 0 ∫ (rx r+1 ( r)) )( dxxf x 0 x 2r a 2r a − a = r − - r 1 + [( a af )]() r∫ (x r+1 ) )( dxxf a 0 x a =0-r M + [ xf ),( r]

a d a M − [( x ) xf ),( r] =- r M + [ xf ),( r] (13a) dx

a d r a Similarly M + [( x ) xf ),( r] = 2a af )( - rM − xf ),([ r] (13B) dx a 2r d − a d a 2 = r 1 − 2 M − [( x ) xf ),( r] ∫ (x r+1 )( x ) )( dxxf dx 0 x dx a 2r − a = r 1 − 2 + ∫ (x r+1 )( fx x)('' xf x))(' dx 0 x a 2r a 2r − a − a = r 1 − 2 + r 1 − ∫ (x r+1 ) fx )('' dxx ∫ (x r+1 )xf )(' dxx 0 x 0 x a 2r + a = r 1 − - r a ( from 1 3a) ∫ (x r−1 f )('') dxx M + [ xf ),( r] 0 x

2r a 2r + a a = r 1 − a - + r − − + - r a [( x r−1 f x)](') 0 ∫ (( r )1 x r ( r ))1 f )(' dxx M + [ xf ),( r] x 0 x 2r a 2r 2r + a a a = r 1 − - (rx r + x r + r − f )(') dxx - r a (a r−1 f a)](') ∫ r r M + [ xf ),( r] a 0 x x a 2r a 2r + + a a = r 1 − r 1 - r + + r − - r a (a a f a)](') r∫ (x r f )(') dxx ∫ (x r f )(') dxx M + [ xf ),( r] 0 x 0 x 2r a 2r a − a =0- r + a + r (rx r 1 + (−r)) )( dxxf + r a r[( x r xf )]() 0 ∫ r+1 M + [xf x),(' r] x 0 x a -r M + [ xf ),( r] a 2r − a =0- r + r + 2 r 1 − r[( x a ) af )( r ∫ (x r+1 ) )( dxxf 0 x r 2 a =- 2ra f(a)+ r M − xf ),([ r] 2 a r = r M − xf ),([ r] - 2ra f(a)

a d 2 2 a r M − [( x ) xf ),( r] = r M − xf ),([ r] - 2ra f(a) (14a) dx

a d 2 2 a r−1 Similarly M + [( x ) xf ),( r] = r M + xf ),([ r] + 2a f a)(' (14b) dx

1123 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

2.2.7. GFMIT of Integral Operators a − 2.2.7.1. The Integral Expression is ∫ a r (xtf )() dttg 0 The GFMIT in [0, a] is a 2r − a a = r 1 − , where Re(p)< γ ,then M − [ xf ),( r] ∫ (x r+1 )() dxxf 0 x a a 2r a − − a − a r = r 1 − r M − [∫ a (xtf ), )( dttg r], ∫ (x r+1 )[ ∫ a (xtf )() dttg ]dx 0 0 x 0 a a 2r − − a = r r 1 − ∫ a )( dttg ∫ (x r+1 () xtf )dx 0 0 x z dz substitute xt=z then x= , dx= ,if x=0 then z=0 and x=a then z=at t t a at 2r − z − a dz = ∫ a r )( dttg ∫ (( )r 1 − zf )() t z r+1 t 0 0 )( t a at 2r − − − (at ) = rr r 1 − ∫ a t )( dttg ∫ (z r+1 )() dzzf 0 0 z a at 2r − −− − (at ) = r 1 r 1 r 1 − ∫ a t )( dttg ∫ (z r+1 )() dzzf 0 0 z a − at = M 0 tg 1),([ r] M − zf ),([ r] a a −r a − at M − [∫ a (xtf ), )( dttg r], = M 0 tg 1),([ r] M − zf ),([ r] (15a) 0 a a −r a − at Similarly M + [∫ a (xtf ), )( dttg r], = M 0 tg 1),([ r] M + zf ),([ r] (15b) 0 a a −r µ a − + µ at M − [∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M − zf ),([ r] (15c) 0 a a −r µ a − + µ at M + [∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M + zf ),([ r] (15d) 0 a a λ −r µ λ a − + µ at + λ M − [x ∫ a xt (xtf ), )( dttg r], = M 0 tg 1),([ r ] M − [ zf ),( r ] (15e) 0 a a λ −r µ λ a − + µ at + λ M + [x ∫ a xt (xtf ), )( dttg r], = M 0 tg 1),([ r ] M + [ zf ),( r ] (15e) 0 a − 2.2.7.2. The Integral Expression is ∫ a r (xtf )() dttg 0 The GFMIT in [0, a] is

1124 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

a 2r − a a = r 1 + , where Re(p)< γ ,then M + [ xf ),( r] ∫ (x r+1 )() dxxf 0 x a a 2r a − − a − a r = r 1 + r M + [∫ a (xtf ), )( dttg r], ∫ (x r+1 )[ ∫ a (xtf )() dttg ]dx 0 0 x 0 a a 2r − − a = r r 1 + ∫ a )( dttg ∫ (x r+1 () xrf )dx 0 0 x z dz substitute xt=z then x= , dx= ,if x=0 then z=0 and x=a then z=at t t a − = ∫ a r )( dttg 0 a at 2r − − − (ar ) = rr r 1 + ∫ a t )( dttg ∫ (z r+1 ) )( dzzf 0 0 z a at 2r − −− − (ar ) = r 1 r 1 r 1 + ∫ a t )( dttg ∫ (z r+1 ) )( dzzf 0 0 z a − ar = M 0 tg 1),([ r] M + [ zf ),( r] a a −r a − ar M + [∫ a (xtf ), )( dttg r], = M 0 tg 1),([ r] M + [ zf ),( r] (16a) 0 a a −r a − ar M − [∫ a (xtf ), )( dttg r], = M 0 tg 1),([ r] M − [ zf ),( r] (16b) 0 a a −r µ a − + µ ar Similarly M = [∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M − [ zf ),( r] ;’ (16c) 0 a a −r µ a − + µ ar M + [∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M + [ zf ),( r] (16d) 0 a a λ −r µ a − + µ ar + λ M = [x ∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M − [ zf ),( r ] (16e) 0 a a λ −r µ a − + µ ar + λ M + [x ∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M + [ zf ),( r ] (16f) 0 a − x 2.2.7.3. The Integral Expression is ∫ a r f )()( dttg 0 t The GFMIT in [0, a] is a 2r − a a = r 1 − , where Re(p)< γ ,then M − [ xf ),( r] ∫ (x r+1 )() dxxf 0 x a a 2r a − x − a − x a r = r 1 − r M − [∫ a f ),( )( dttg r], ∫ (x r+1 )[ ∫ a f )()( dttg ]dx 0 t 0 x 0 t

1125 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

a a 2r − − a x = r r 1 − ∫ a )( dttg ∫ (x r+1 f )() dx 0 0 x t x a substitute =z then x= tz , dx= tdz ,if x=0 then z=0 and x=a then z= t t a a t 2r − − a = r r 1 − ∫ a )( dttg ∫ (( tz ) r+1 )tf z)( tdz 0 0 tz )(

a a 2r a t )( − − = rr r 1 − t ∫ a )( dttgt ∫ (z r+1 )() dzzf 0 0 z

a a 2r a t )( − −+ − = rr 11 r 1 − t ∫ a t )( dttg ∫ (z r+1 ) )( dzzf 0 0 z a a + t = M 0 tg ),([ r ]1 M − [ zf ),( r] a a − x a r a + t M − [∫ a f ),( )( dttg r], = M 0 tg ),([ r ]1 M − zf ),([ r] (17a) 0 t

a a − x a r a + t Similarly M + [∫ a f ),( )( dttg r], = M 0 tg ),([ r ]1 M + zf ),([ r] (17b) 0 t a a −r µ a + µ + at M − [∫ a (xtft ), )( dttg r], = M 0 tg ),([ r ]1 M − zf ),([ r] (17c) 0 a a −r µ a + µ + at M + [∫ a (xtft ), )( dttg r], = M 0 tg ),([ r ]1 M + zf ),([ r] (17d) 0 a a λ −r µ a + + µ at + λ M − [x ∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M − [ zf ),( r ] (17e) 0 a a λ −r µ a + + µ at + λ M + [x ∫ a (xtft ), )( dttg r], = M 0 tg 1),([ r ] M + [ zf ),( r ] (17f) 0 a − x 2.2.7.4. The GFMIT Of Integral Expression is ∫ a r f )()( dttg 0 t The GFMIT in [0, a] is a 2r − a a = r 1 + , where Re(p)< γ ,then M + [ xf ),( r] ∫ (x r+1 )() dxxf 0 x a a 2r a − x − a − x a r = r 1 + r M + [∫ a f ),( )( dttg r], ∫ (x r+1 )[ ∫ a f )()( dttg ]dx 0 t 0 x 0 t

1126 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

a a 2r − − a x = r r 1 + ∫ a )( dttg ∫ (x r+1 f )() dx 0 0 x t x a substitute =z then x= tz , dx= tdz ,if x=0 then z=0 and x=a then z= t t a a t 2r − − a = r r 1 + ∫ a )( dttg ∫ (( tz ) r+1 ) zf )( tdz 0 0 tz )(

a a 2r a t )( − − = rr r 1 + t ∫ a )( dttgt ∫ (z r+1 )() dzzf 0 0 z

a a 2r a t )( − −+ − = rr 11 r 1 + t ∫ a t )( dttg ∫ (z r+1 )() dzzf 0 0 z a a + t = M 0 tg ),([ r ]1 M − [ zf ),( r] a a − x a r a + t M − [∫ a f ),( )( dttg r], = M 0 tg ),([ r ]1 M + zf ),([ r] (18a) 0 t a a − x a r a + t Similarly M + [∫ a f ),( )( dttg r], = M 0 tg ),([ r ]1 M − zf ),([ r] (18b) 0 t a a a −r µ a + µ + t M + [∫ a (xtft ), )( dttg r], = M 0 tg ),([ r ]1 M − zf ),([ r] (18c) 0 a a a −r µ a + µ + t M − [∫ a (xtft ), )( dttg r], = M 0 tg ),([ r ]1 M + zf ),([ r] (18d) 0 a a a λ −r µ λ a + + µ t + λ M + [x ∫ a xt (xtf ), )( dttg r], = M 0 tg 1),([ r ] M − zf ),([ r ] (18e) 0 a a a λ −r µ λ a + + µ t + λ M − [x ∫ a xt (xtf ), )( dttg r], = M 0 tg 1),([ r ] M + zf ),([ r ] (18f) 0 2.2.8. GFMIT of Integral Equations 2.2.8.1. The GFMIT in [0,a] is a 2r − a a = r 1 − M − [ xf ),( r] ∫ (x r+1 )() dxxf 0 x a − The is ∫ a r tf )( K(xt )dt = tg )( , 0 a a 2r a − − a − a r = r 1 − [ r dx = a M − [∫ a tf )( K(xt )dt r], ∫ (x r+1 ) ∫ a tf )( K(xt )dt ] M + tg ),([ r] 0 0 x 0

1127 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

a 2r a − a − r 1 − r dx= a ∫ (x r+1 ) ∫ a tf )( K(xt )dt ] M − tg ),([ r] 0 x 0 a a 2r − − a r r 1 − dx= ∫ a )( dttf ] ∫ (x r+1 )K(xt ) rg )( 0 0 x z dz substitute xt=z , x= ,dx= , if x=0 then z=0 and if x=a then z=at t t a at 2r − z − a dz ∫ a r )( dttf ] ∫ )( r 1 − )K z)( = rg )( t z r+1 t 0 0 )( t a at 2r − − − (at ) rr r 1 − = ∫ a t )( dttf ] ∫ (z r+1 )K )( dzz rg )( 0 0 z a at 2r − −− − (at ) r 1 r 1 r 1 − = ∫ a t )( dttf ] ∫ (z r+1 )K )( dzz rg )( 0 0 z at at f 1( − r) K − r)( = rg )( , similarly f 1( − r) K + r)( = rg )( replace ( r) by (1-r) at rf )( K − 1( − r) = g 1( − r) g 1( − r) 1 1 rf )( = , where rL )( = and rL )( = at at at K − 1( − r) K − 1( − r) K + 1( − r) rf )( = g 1( − r) rL )( , then the solution is a − f(x)= ∫ a r Ltg ()( xt )dt (19) 0 2.2.8.2. The GFMIT in [0,a] is a 2r − a a = r 1 − M − [ xf ),( r] ∫ (x r+1 ) )( dxxf 0 x 1 2 If K(x)= x Yv x)( , where Yv x)( is the Bessel function of second kind of order v. 1 2 and L(x)= x H v x)( , where H v x)( is the Struvi’s function a 1 −r 2 = The integral equation is ∫ a (xt ) )( Ytf v (xt )dt tg )( 0 The GFMIT in [0,a] of this integral equation is a 1 a −r 2 M − [∫ a (xt ) )( Ytf v (, xt )dt r], 0 a 2r a 1 − a − = r 1 − r 2 = a ∫ (x r+1 )[ ∫ a (xt ) )( Ytf v (xt )dt ]dx M − g x),([ r] 0 x 0

1128 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

a a 2r 1 − − a r r 1 − 2 = ∫ a )( dttf ∫ (x r+1 )( xt ) Yv (xt )dx rg )( 0 0 x z dz substitute xt=z then x= , dx= , if x=0 then z=0 and if x=a then z=at t t a at 2r 1 − z − a dz r r 1 − 2 = ∫ a )( dttf ∫ (( ) )( z) Yv z)( rg )( t z r+1 t 0 0 )( t a at 2r 1 − − − (at ) rr r 1 − 2 = ∫ a t )( dttf ∫ (z r+1 )( z) Yv )( dzz rg )( 0 0 z a at 2r − − − (at ) rr r 1 − = ∫ a t )( dttf ∫ (z r+1 )K v )( dzz rg )( 0 0 z at at f 1( − r) K − r)( = rg )( , similarly f 1( − r) K + r)( = rg )( replace (r ) by (1-r) at rf )( K − 1( − r) = g 1( − r) g 1( − r) 1 1 = , where = and = rf )( at H r)( at H r)( at K − 1( − r) K − 1( − r) K + 1( − r) rf )( = g 1( − r) H r)( , then its solution is a 1 −r 2 f(x) = ∫ a (xt ) tg )( H v (xt )dt (20) 0 2.2.8.3. The GFMIT in [0,a] is a 2r − a a = r 1 − M − [ xf ),( r] ∫ (x r+1 ) )( dxxf 0 x a 1 −r 2 = The integral equation defined by g(x)= ∫ a (xt ) )( Ytf v (xt )dt tg )( is called 0 the Y-transform of f(x) , then we write g(t)= Yv [ xf t]),( a 1 −r 2 Similarly the integral equation defined by f(x)= ∫ a (xt ) tg )( H v (xt )dt , is called the H-transform of 0 * −= * g(t) , we write f(x)= H v tg ),([ x] . Here H v H v . a −r x dy = The integral equation is ∫ a K1 ( ) f1 y)( g1 x)( .\Using GFMIT in [0,a] is 0 y y a a −r x dy a M − [∫ a K1 f ( () 1 yxf )( ), r]= M − [g1 x),( r] 0 y y a 2r a − a − x dy r 1 − r = ∫ (x r+1 )dx ∫ a K1 ( ) f1 y)( g1 r)( 0 x 0 y y

1129 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

a a 2r − dy − a x r r 1 − = ∫ a f1 y)( ∫ (x r+1 )K1 ( )dx g1 r)( 0 y 0 x y x a substitute = z , x=yz , dx=ydz , if x=0 then z=0 and if x=a then z= y y a a y 2r − dy − a r r 1 − = ∫ a f1 y)( ∫ (( yz ) r+1 )K1 z)( ydz g1 r)( 0 y 0 (yz ) a a y 2r − − dy − (ay 0 rr 1 r 1 − = ∫ a y f1 y)( ∫ (z r+1 )K1 )( dzz g1 r)( 0 y 0 z

a t f1 r)( K1 r)( = = g1 r)( ,

1 1 f r)( = g r)( , where L r)( = 1 1 a 1 a t t K1− r)( K1− r)(

f1 r)( = g1 r)( L1 r)( , its solution is a −r x f1 (x)= ∫ a g1 )( Lt 1 ( )dt (21) 0 y

2.2.9. GFMIT of Weyl Fractional Transform The Weyl fractional transform of the function f(t) is denoted by −α W [ tf )]( = F x α),( and defined as ∞ −α 1 α − W [ tf )]( = F x α),( = (t − x) 1 )( dttf ,00 , Γ α ∫ )( x

The GFMIT in [0, a] is a 2r − a a = a = r 1 − , where Re(p)< γ , then M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x a 2r ∞ − a 1 α − M a [F x α),,( r] = (x r 1 − )[ (t − x) 1 )( dttf ]dx − ∫ r+1 ∫ Γ α 0 x x )( ∞ a 2r 1 α − − a = (t − x) 1 )( dttf (x r 1 − )dx Γ α ∫ ∫ r+1 )( x 0 x ∞ r 2r 1 α − x a = (t − x) 1 )( dttf [ − ]a Γ α ∫ − r 0 )( x r ( )xr ∞ r 2r 1 α − a a = (t − x) 1 )( dttf [ − ] Γ α ∫ − r )( x r ( )ar

1130 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

∞ 1 α − = (t − x) 1 )( dttf [a r + a r ] Γ α ∫ r )( x ∞ 1 1 α − = 2a r (t − x) 1 )( dttf Γ α ∫ r )( x r 2a a = F− x α),{ r r a 2a a M − [F x α),,( r]= F− x α),{ (22) r

2.2.10. Application of The GFMIT to the Summation of the Series

2.2.10.1. The GFMIT in [0, a] is a 2r − a a = a = r 1 − , where Re(p)< γ , M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x then its inversion is +iac 1 − f(x)= x r M a xf ),([ ]drr , exists for r>0 π ∫ − 2 i −iac +iac 1 − f(nx)= (nx ) r M a xf ),([ ]drr , π ∫ − 2 i −iac +iac 1 − − = n r x r M a xf ),([ ]drr π ∫ − 2 i −iac ∞ ∞ +iac 1 − − (nxf ) = n r x r M a [ xf ),( ]drr ∑ π ∑ ∫ − n=0 2 i n=0 −iac +iac ∞ 1 − − = ( n r )x r M a [ xf ),( ]drr π ∫ ∑ − 2 i −iac n=0 +iac 1 −r a = x M − xf ),([ r ξ )(] drr 2πi ∫ −iac

∞ +iac 1 − (nxf ) = x r M a xf ),([ r ξ )(] drr (23a) ∑ π ∫ − n=0 2 i −iac ∞ 1 where is the is denoted by ξ and defined as ∑ r r)( n=0 n ∞ 1 ξ = , Re(r)>1 r)( ∑ r n=0 n ∞ +iac 1 − Similarly (nxf ) = x r M a xf ),([ r ξ )(] drr (23b) ∑ π ∫ + n=0 2 i −iac

1131 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______2.2.10.2. The GFMIT in[0, a] is a 2r − a a = a = r 1 − , where Re(p)< γ , M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x then its inversion is +iac 1 − f(x) = x r M a xf ),([ ]drr , exists for r>0 π ∫ − 2 i −iac

The Hurvitz Zeta function is denoted by ξ ap ),( and defined as ∞ 1 ξ = ,01, then by using inversion ar ),( ∑ p n=0 (x + a) +iac 1 − f(x+a) = (x + a) r M a [ xf ),( ]drr , π ∫ − 2 i −iac ∞ ∞ +iac 1 − (xf + a) = (x + a) r M a [ xf ),( ]drr ∑ π ∑ ∫ − n=1 2 i n=1 −iac +iac ∞ 1 − = [ (x + a) r ]M a [ xf ),( ]drr π ∫ ∑ − 2 i −iac n=1 + 1 iac = M a xf ),([ r ξ ax ),(] dr π ∫ − 2 i −iac + ∞ 1 iac (xf + a) = M a [ xf ),( r ξ ax ),(] dr (24a) ∑ π ∫ − n=1 2 i −iac ∞ − Where ξ ax ),( = ∑ (x + a) r n=0 + ∞ 1 iac Similarly (xf + a) = M a [ xf ),( r ξ ax ),(] dr (24b) ∑ π ∫ + n=1 2 i −iac ∞ − − − 2.2.10.3. If ∑ (− )1 n 1 n r = 1[ − 21 n ξ r)( , the for GFMIT in [0,a] is n=1 a 2r − a a = a = r 1 − , M − [ xf ),( r] F− r)( ∫ (x r+1 ) )( dxxf 0 x where Re(p)< γ , then its inversion is +iac 1 − f(x)= x r M a xf ),([ ]drr , exists for r>0 π ∫ − 2 i −iac ∞ +iac ∞ − 1 − − (− )1 n 1 (nxf ) = (− )1 n 1 (nx ) r M a [ xf ),( ]drr ∑ π ∫ ∑ − n=1 2 i −iac n=1 +iac ∞ 1 − − − = [ (− )1 n 1n r ]x r M a xf ),([ ]drr π ∫ ∑ − 2 i −iac n=1

1132 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

∞ +iac − 1 − − (− )1 n 1 (nxf ) = 1[ − 21 r ξ )(] xr r M a xf ),([ ]drr (25a) ∑ π ∫ − n=1 2 i −iac ∞ +iac − 1 − − Similarly (− )1 n 1 (nxf ) = 1[ − 21 r ξ )(] xr r M a xf ),( ]drr (25b) ∑ π ∫ + n=1 2 i −iac

2.2.11. Application of the GFMIT to the Cauchy’s Linear Differential Equation

The Cauchy’s linear differential equation is 2 fx x)('' + xf x)(' + xf )( = 0 By using GFMIT in [0,a) , we have a 2 M − [ fx x)('' + xf x)(' + xf ),( r] =0 − a rf a)( af a)(' M − [ xf ),( r]= (26a) r 2 − a rf a)( af a)(' Similarly M + [ xf ),( r]= (26b) r 2 +iac 1 − f(x)= x r M a xf ),([ ]drr π ∫ − 2 i −iac +iac 1 − rf a)( − af a)(' f(x)= x r M a [ ]dr (27a) π ∫ − 2 2 i −iac r +iac 1 − rf a)( − af a)(' Similarly f(x)= x r M a [ ]dr (27b) π ∫ + 2 2 i −iac r

2.2.12. Remarks 1. Properties and Theorems of Mellin Integral Transform in [0, ∞ ] are exists for the GFMIT in{0,a] 2.G FMITin[0,a] of derivatives , differential operators ,integrals , integral expressions and integral equations are obtained 1 1 3. Propositions for the functions f ( ) and (logx)f(x) gives new results for the GFMIT in [0, a] x x 4. New result is obtained of Weyl fractional transform by using GFMIT in [0,a] 5.Application of the GFMIT in [0,a] is in summation of the series is discussed. . 6. Using GFMIT in [0,a] solution of the Cauchy’s linear differential Equation is obtained

CONCLUSION

All the properties and theorems of Mellin integral transform are exists to GFMIT in [0,a]..Results for the derivatives , differential operators, integrals , integral expressions and integral equations are exists for GFMIT in [0,a].This integral transform is applies to obtain the results of summation of series and solution of the Caychy’s linear differential equation. In this paper we get new result of Weyl fractional transform 1 by using GFMIT in [0,a] and new integral transform named by Mellin type integral transform in [ ,∞ ] or a 1 it is also named as Pise-Khairnar integral transform in [ ,∞ ] a

1133 Scholars Research Library S. M. Khairnar et al Arch. Appl. Sci. Res., 2012, 4 (2):1117-1134 ______

REFERENCES

[1].Derek Naylor, J. of Mathematica and Mechanics , ( 1963 ) vol.12, No.2 [2]. Lokenath Debnath, Integral Transforms And Their Applications, 1995 ,CRC Press Inc. [3]. C. Fox , Applications of Mellin's Transformation to the integral equations ,( 1933 ) [4]. Ian N. Sneddon , The use of Integral Transforms, TMH edition 1974 [5].C .,3rd March, 1934 , pp 495-502 [6]. S. M. Khairnar, R. M. Pise, J. N. Salunke , Int. J. of Maths & Engg. Applications (IJMSEA), Vol.4, No.- IV, ( October 2010 ) pp- 307-325 [7]:J.M.Mendez and J.R. Negrin , Ganita ,( 1988 ), vol.39, No.1 [8]. S.M .Khairnar ,R. M. Pise, J. N. Salunkhe, International J.of Multi displ. Research & Advacs in Engg(IJMRAE) Vol.!, No.1,Nov. 2009 ,pp 213-234 [9]..S.M .Khairnar ,R. M. Pise, J. N. Salunkhe In International Journal Of Mathematical Sciences And Applications vol. 1 No. 1 (Jan 2011 ) pp. 1-17 [10].A.H.Zemanian, Generalized Integral Transformation, Interscience Publication, New York ,( 1968 ) [11]. A.H. Zemanian , J. SIAM Vol.14. No.1. Jan. 1908 Prited in U.S.A. [12]. Johannes Bliimlein, Nuclear physics B (Proc. Suppl.)79 ( 1999 ) 166-168 [13]. D.J. Bedingham , Therotical Physics ,The Blackett Laboratory , Imperial College, Prince Consort Road,SW7 2BW,UK. arXiv:ph/00110112x1 1NOV 2000 . [15].J. J.Betancor ,M. T. Flores, ,Comment.Math.Univ.carolinae,32,4 ( 1991 ) ,pp 627-638 [16].:C.Fox,', Proc. Comb. Phil. Soc.( 1963 ),59-63. [17].S.M. Khairnar, R. M. Pise,J. N. Salunkhe , International Journal of Pure and Applied Science and Technology 1 (2) ( 2010 ) pp 114-126 [18].T.L.Harma,J.B.Dabney and N,J,Richert, Advanced Enineering Mathematics and Matlab, The Mathwork Inc.3 Apple Hpll Drive Natic MA 01760 USA. [19].V.A. Brychkov and A.P. Prudinikov, .Gardan % Breech Science Publications( 1989 ). [20].Vonn, Ober die Singularita, Math. Annalen , Bd.128.S.171-176,( 1954 ), Laboratory ,Imperial College, Prince [21].Sohail Ahmed, Lie Yang and Lajos Hanzo,, School of ECS, University of southampton,SO17,1Bj, UK, University of southamptons ,SO17 1BJ,UK. [22].Gudadhe A. S. “LM-Spaces,,, Journal of M.A.C.T ., Vol.24 ( 1991 ), pp 97-106.

1134 Scholars Research Library