Asymptotics and Mellin-Barnes Integrals

Total Page:16

File Type:pdf, Size:1020Kb

Asymptotics and Mellin-Barnes Integrals This page intentionally left blank Asymptotics and Mellin-Barnes Integrals is a comprehensive account of the proper- ties of Mellin-Barnes integrals and their application to problems involving special functions, primarily the determination of asymptotic expansions. An account of the basic analytical properties of Mellin-Barnes integrals and Mellin transforms and their use in applications ranging from number theory to differential and difference equations is followed by a systematic analysis of the asymptotics of Mellin-Barnes representations of many important special functions, including hypergeometric, Bessel and parabolic cylinder functions. An account of the recent developments in the understanding of the Stokes phenomenon and of hyperasymptotics in the set- ting of Mellin-Barnes integrals ensues. The book concludes with the application of ideas set forth in the earlier parts of the book to higher-dimensional Laplace-type integrals and sophisticated treatments of Euler-Jacobi series, the Riemann zeta function and the Pearcey integral. Detailed numerical illustrations accompany many of the results developed in the text. Richard Paris is a Reader in Mathematics at the University of Abertay Dundee. He is the author of numerous papers that have appeared in Proceedings A of the Royal Society of London, Methods and Applications of Analysis and the Journal of Computational and Applied Mathematics and is the co-author of Asymptotics of High Order Differential Equations. David Kaminski is an Associate Professor of Mathematics at the University of Lethbridge. He is the author of numerous papers that have appeared in such publi- cations as SIAM Journal on Mathematical Analysis, the Journal of Computational and Applied Mathematics, Utilitas Mathematica and Methods and Applications of Analysis. encyclopedia of mathematics and its applications EDITED BY G.-C. ROTA Editorial Board R. Doran, M. Ismail, T.-Y. Lam, E. Lutwak Volume 85 Asymptotics and Mellin-Barnes Integrals 6 H. Minc Permanents 19 G. G. Lorentz, K. Jetter, and S. D. Riemenschneider Birkhoff Interpolation 22 J. R. Bastida Field Extensions and Galois Theory 23 J. R. Cannon The One-Dimensional Heat Equation 24 S. Wagon The Banach–Tarski Paradox 25 A. Salomaa Computation and Automata 27 N. H. Bingham, C. M. Goldie, and J. L. Teugels Regular Variation 28 P. P. Petrushev and V. A. Popov Rational Approximation of Real Functions 29 N. White (ed.) Combinatorial Geometries 30 M. Pohst and H. Zassenhaus Algorithmic Algebraic Number Theory 31 J. Aczel and J. Dhombres Functional Equations in Several Variables 32 M. Kuczma, B. Choczewski, and R. Ger Iterative Functional Equations 33 R. V. Ambartzumian Factorization Calculus and Geometric Probability 34 G. Gripenberg, S.-O. Londen, and O. Staffans Volterra Integral and Functional Equations 35 G. Gasper and M. Rahman Basic Hypergeometric Series 36 E. Torgersen Comparison of Statistical Experiments 37 A. Neumaier Interval Methods for Systems of Equations 38 N. Korneichuk Exact Constants in Approximation Theory 39 R. Brualdi and H. Ryser Combinatorial Matrix Theory 40 N. White (ed.) Matroid Applications 41 S. Sakai Operator Algebras in Dynamical Systems 42 W. Hodges Basic Model Theory 43 H. Stahl and V. Totik General Orthogonal Polynomials 44 R. Schneider Convex Bodies 45 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions 46 A. Björner et al. Oriented Matroids 47 G. Edgar and L. Sucheston Stopping Times and Directed Processes 48 C. Sims Computation with Finitely Presented Groups 49 T. Palmer Banach Algebras and the General Theory of *-Algebras 50 F. Borceux Handbook of Categorical Algebra 1 51 F. Borceux Handbook of Categorical Algebra 2 52 F. Borceux Handbook of Categorical Algebra 3 53 V. F. Kolchin Random Graphs 54 A. Katok and B. Hasselblatt Intorduction to the Modern Theory of Dynamical Systems 55 V. N. Sachkov Combinatorial Methods in Discrete Mathematics 56 V. N. Sachkov Probabilistic Methods in Discrete Mathematics 57 P. M. Cohn Skew Fields 58 R. Gardner Geometric Topography 59 G. A. Baker Jr. and P. Graves-Morris Pade Approximations 60 J. Krajicek Bounded Arithmetic, Propositional Logic, and Complexity Theory 61 H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics 62 H. O. Fattorini Infinite Dimensional Optimization and Control Theory 63 A. C. Thompson Minkowski Geometry 64 R. B. Bapat and T. E. S. Raghavan Nonnegative Matrices with Applications 65 K. Engel Sperner Theory 66 D. Cvetkovic, P. Rowlinson, and S. Simic Eigenspaces of Graphs 67 F. Bergeron, G. Labelle, and P. Leroux Combinatorial Species and Tree-Like Structures 68 R. Goodman and N. Wallach Representations and Invariants of the Classical Groups 70 A. Pietsch and J. Wenzel Orthonormal Systems and Banach Space Geometry 71 G. E. Andrews, R. Askey, and R. Roy Special Functions ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Asymptotics and Mellin-Barnes Integrals R. B. PARIS D. KAMINSKI Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521790017 © Cambridge University Press 2001 This book is in copyright. Suect to statutory ception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2001 isbn-13- 978-0-511-06706-8 eBook (NetLibrary) isbn-10- 0-511-06706-2 eBook (NetLibrary) isbn-13- 978-0-521-79001-7 hardback isbn-10- 0-521-79001-8 hardback Cambridge University Press has no responsibility for the persistence or accuracy of s for ternal or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Prefacepagexiii 1 Introduction 1 1.1 Introduction to Asymptotics 1 1.1.1 Order Relations 1 1.1.2 Asymptotic Expansions 4 1.1.3 Other Expansions 15 1.2 Biographies of Mellin and Barnes 25 2 Fundamental Results 29 2.1 The Gamma Function (z) 29 2.1.1 The Asymptotic Expansion of (z) 29 2.1.2 The Stirling Coefficients 32 2.1.3 Bounds for (z) 33 2.2 Expansion of Quotients of Gamma Functions 35 2.2.1 Inverse Factorial Expansions 36 2.2.2 A Recursion Formula when αr=βr=140 2.2.3 Examples 44 2.2.4 An Algebraic Method for the Determination of the Aj 46 2.2.5 Special Cases 49 2.3 The Asymptotic Expansion of Integral Functions 55 2.3.1 An Example 58 2.4 Convergence of Mellin-Barnes Integrals 63 2.5 Order Estimates for Remainder Integrals 69 2.5.1 An Example 69 2.5.2 Lemmas 71 vii viii Contents 3 Properties of Mellin Transforms 79 3.1 Basic Properties 79 3.1.1 Definition 79 3.1.2 Translational and Differential Properties 81 3.1.3 The Parseval Formula 82 3.2 Analytic Properties 85 3.3 Inverse Mellin Transforms 89 3.3.1 Integrals Connected with e−z 89 3.3.2 Some Standard Integrals 91 3.3.3 Discontinuous Integrals 93 3.3.4 Gamma-Function Integrals 96 3.3.5 Ramanujan-Type Integrals 99 3.3.6 Barnes’ Lemmas 103 3.4 Mellin-Barnes Integral Representations 106 3.4.1 The Confluent Hypergeometric Functions 107 3.4.2 The Gauss Hypergeometric Function 110 3.4.3 Some Special Functions 112 4 Applications of Mellin Transforms 117 4.1 Transformation of Series 117 4.1.1 The Mellin Transform Method 117 4.1.2 The Poisson-Jacobi Formula 120 4.2 Examples 122 4.2.1 An Infinite Series 122 4.2.2 A Smoothed Dirichlet Series 125 4.2.3 A Finite Sum 128 4.3 Number-Theoretic Examples 133 4.3.1 A Harmonic Sum 133 4.3.2 Euler’s Product 136 4.3.3 Ramanujan’s Function 137 4.3.4 Some Other Number-Theoretic Sums 141 4.4 Solution of Differential Equations 146 4.4.1 Potential Problems in Wedge-Shaped Regions 146 4.4.2 Ordinary Differential Equations 149 4.4.3 Inverse Mellin Transform Solutions 152 4.5 Solution of Integral Equations 156 4.5.1 Kernels of the Form k(xt) 157 4.5.2 Kernels of the Form k(x/t) 160 4.6 Solution of Difference Equations 164 4.6.1 Solution by Mellin Transforms 166 4.6.2 The Hypergeometric Difference Equation 167 4.6.3 Solution of the Inhomogeneous First-Order Equation 172 Contents ix 4.7 Convergent Inverse Factorial Series 174 5 Asymptotic Expansions 179 5.1 Algebraic Asymptotic Expansions 179 5.1.1 The Exponential Integral E1(z) 180 5.1.2 The Parabolic Cylinder Function Dν (z) 182 5.1.3 A Bessel Function Integral 184 5.1.4 The Mittag-Leffler Function Ea(z) 186 5.2 Remainder Integrals 190 5.2.1 Error Bounds 190 5.2.2 Numerical Evaluation 195 5.3 Saddle-Point Approximation of Integrals 197 5.3.1 An Integral Due to Heading and Whipple 198 5.3.2 The Bessel Function Jn(nx) 200 5.3.3 A Gauss Hypergeometric Function 202 5.4 Exponential Asymptotic Expansions 205 5.4.1 The Exponential Integral E1(z) 206 5.4.2 The Bessel Function Jν (z) 208 5.4.3 The Parabolic Cylinder Function Dν (z) 210 5.4.4 An Infinite Sum 213 5.5 Faxén’s Integral 216 5.6 Integrals with a ‘Contour Barrier’ 220 5.6.1 An Illustrative Example 221 5.6.2 An Integral Involving a Bessel Function 225 5.6.3 Example in §4.2.3 Revisited 229 6 The Stokes Phenomenon and Hyperasymptotics 234 6.1 The Stokes Phenomenon 234 6.1.1 A Qualitative Description 234 6.1.2 The Modified Bessel Function Kν (z) 236 6.2 Mellin-Barnes Theory 240 6.2.1 Exponentially-Improved Expansion 241 6.2.2 Estimates for |RN,M(z)| 244 6.2.3 The Stokes Multiplier 246 6.2.4 The Stokes Multiplier for a High-Order Differential Equation 249 6.2.5 Numerical
Recommended publications
  • Applications of the Mellin Transform in Mathematical Finance
    University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2018 Applications of the Mellin transform in mathematical finance Tianyu Raymond Li Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Li, Tianyu Raymond, Applications of the Mellin transform in mathematical finance, Doctor of Philosophy thesis, School of Mathematics and Applied Statistics, University of Wollongong, 2018. https://ro.uow.edu.au/theses1/189 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • APPENDIX. the MELLIN TRANSFORM and RELATED ANALYTIC TECHNIQUES D. Zagier 1. the Generalized Mellin Transformation the Mellin
    APPENDIX. THE MELLIN TRANSFORM AND RELATED ANALYTIC TECHNIQUES D. Zagier 1. The generalized Mellin transformation The Mellin transformation is a basic tool for analyzing the behavior of many important functions in mathematics and mathematical physics, such as the zeta functions occurring in number theory and in connection with various spectral problems. We describe it first in its simplest form and then explain how this basic definition can be extended to a much wider class of functions, important for many applications. Let ϕ(t) be a function on the positive real axis t > 0 which is reasonably smooth (actually, continuous or even piecewise continuous would be enough) and decays rapidly at both 0 and , i.e., the function tAϕ(t) is bounded on R for any A R. Then the integral ∞ + ∈ ∞ ϕ(s) = ϕ(t) ts−1 dt (1) 0 converges for any complex value of s and defines a holomorphic function of s called the Mellin transform of ϕ(s). The following small table, in which α denotes a complex number and λ a positive real number, shows how ϕ(s) changes when ϕ(t) is modified in various simple ways: ϕ(λt) tαϕ(t) ϕ(tλ) ϕ(t−1) ϕ′(t) . (2) λ−sϕ(s) ϕ(s + α) λ−sϕ(λ−1s) ϕ( s) (1 s)ϕ(s 1) − − − We also mention, although we will not use it in the sequel, that the function ϕ(t) can be recovered from its Mellin transform by the inverse Mellin transformation formula 1 C+i∞ ϕ(t) = ϕ(s) t−s ds, 2πi C−i∞ where C is any real number.
    [Show full text]
  • Generalizsd Finite Mellin Integral Transforms
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2012, 4 (2):1117-1134 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Generalizsd finite mellin integral transforms S. M. Khairnar, R. M. Pise*and J. N. Salunke** Deparment of Mathematics, Maharashtra Academy of Engineering, Alandi, Pune, India * R.G.I.T. Versova, Andheri (W), Mumbai, India **Department of Mathematics, North Maharastra University, Jalgaon-India ______________________________________________________________________________ ABSTRACT Aim of this paper is to see the generalized Finite Mellin Integral Transforms in [0,a] , which is mentioned in the paper , by Derek Naylor (1963) [1] and Lokenath Debnath [2]..For f(x) in 0<x< ∞ ,the Generalized ∞ ∞ ∞ ∞ Mellin Integral Transforms are denoted by M − [ f( x ), r] = F− ()r and M + [ f( x ), r] = F+ ()r .This is new idea is given by Lokenath Debonath in[2].and Derek Naylor [1].. The Generalized Finite Mellin Integral Transforms are extension of the Mellin Integral Transform in infinite region. We see for f(x) in a a a a 0<x<a, M − [ f( x ), r] = F− ()r and M + [ f( x ), r] = F+ ()r are the generalized Finite Mellin Integral Transforms . We see the properties like linearity property , scaling property ,power property and 1 1 propositions for the functions f ( ) and (logx)f(x), the theorems like inversion theorem ,convolution x x theorem , orthogonality and shifting theorem. for these integral transforms. The new results is obtained for Weyl Fractional Transform and we see the results for derivatives differential operators ,integrals ,integral expressions and integral equations for these integral transforms.
    [Show full text]
  • Extended Riemann-Liouville Type Fractional Derivative Operator with Applications
    Open Math. 2017; 15: 1667–1681 Open Mathematics Research Article P. Agarwal, Juan J. Nieto*, and M.-J. Luo Extended Riemann-Liouville type fractional derivative operator with applications https://doi.org/10.1515/math-2017-0137 Received November 16, 2017; accepted November 30, 2017. Abstract: The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modied Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by dening the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox’s H-function are also presented. Keywords: Gamma function, Extended beta function, Riemann-Liouville fractional derivative, Hypergeomet- ric functions, Fox H-function, Generating functions, Mellin transform, Integral representations MSC: 26A33, 33B15, 33B20, 33C05, 33C20, 33C65 1 Introduction Extensions and generalizations of some known special functions are important both from the theoretical and applied point of view. Also many extensions of fractional derivative operators have been developed and applied by many authors (see [2–6, 11, 12, 19–21] and [17, 18]). These new extensions have proved to be very useful in various elds such as physics, engineering, statistics, actuarial sciences, economics, nance, survival analysis, life testing and telecommunications. The above-mentioned applications have largely motivated our present study. The extended incomplete gamma functions constructed by using the exponential function are dened by z p α, z; p tα−1 exp t dt R p 0; p 0, R α 0 (1) t 0 ( ) = − − ( ( ) > = ( ) > ) and S ∞ p Γ α, z; p tα−1 exp t dt R p 0 (2) t z ( ) = − − ( ( ) ≥ ) with arg z π, which have been studiedS in detail by Chaudhry and Zubair (see, for example, [2] and [4]).
    [Show full text]
  • Prime Number Theorem
    Prime Number Theorem Bent E. Petersen Contents 1 Introduction 1 2Asymptotics 6 3 The Logarithmic Integral 9 4TheCebyˇˇ sev Functions θ(x) and ψ(x) 11 5M¨obius Inversion 14 6 The Tail of the Zeta Series 16 7 The Logarithm log ζ(s) 17 < s 8 The Zeta Function on e =1 21 9 Mellin Transforms 26 10 Sketches of the Proof of the PNT 29 10.1 Cebyˇˇ sev function method .................. 30 10.2 Modified Cebyˇˇ sev function method .............. 30 10.3 Still another Cebyˇˇ sev function method ............ 30 10.4 Yet another Cebyˇˇ sev function method ............ 31 10.5 Riemann’s method ...................... 31 10.6 Modified Riemann method .................. 32 10.7 Littlewood’s Method ..................... 32 10.8 Ikehara Tauberian Theorem ................. 32 11ProofofthePrimeNumberTheorem 33 References 39 1 Introduction Let π(x) be the number of primes p ≤ x. It was discovered empirically by Gauss about 1793 (letter to Enke in 1849, see Gauss [9], volume 2, page 444 and Goldstein [10]) and by Legendre (in 1798 according to [14]) that x π(x) ∼ . log x This statement is the prime number theorem. Actually Gauss used the equiva- lent formulation (see page 10) Z x dt π(x) ∼ . 2 log t 1 B. E. Petersen Prime Number Theorem For some discussion of Gauss’ work see Goldstein [10] and Zagier [45]. In 1850 Cebyˇˇ sev [3] proved a result far weaker than the prime number theorem — that for certain constants 0 <A1 < 1 <A2 π(x) A < <A . 1 x/log x 2 An elementary proof of Cebyˇˇ sev’s theorem is given in Andrews [1].
    [Show full text]
  • Fourier-Type Kernels and Transforms on the Real Line
    FOURIER-TYPE KERNELS AND TRANSFORMS ON THE REAL LINE GOONG CHEN AND DAOWEI MA Abstract. Kernels of integral transforms of the form k(xy) are called Fourier kernels. Hardy and Titchmarsh [6] and Watson [15] studied self-reciprocal transforms with Fourier kernels on the positive half-real line R+ and obtained nice characterizing conditions and other properties. Nevertheless, the Fourier transform has an inherent complex, unitary structure and by treating it on the whole real line more interesting properties can be explored. In this paper, we characterize all unitary integral transforms on L2(R) with Fourier kernels. Characterizing conditions are obtained through a natural splitting of the kernel on R+ and R−, and the conversion to convolution integrals. A collection of concrete examples are obtained, which also include "discrete" transforms (that are not integral transforms). Furthermore, we explore algebraic structures for operator-composing integral kernels and identify a certain Abelian group associated with one of such operations. Fractional powers can also be assigned a new interpretation and obtained. 1. Introduction The Fourier transform is one of the most powerful methods and tools in mathematics (see, e.g., [3]). Its applications are especially prominent in signal processing and differential equations, but many other applications also make the Fourier transform and its variants universal elsewhere in almost all branches of science and engineering. Due to its utter significance, it is of interest to investigate the Fourier transform
    [Show full text]
  • Laplace Transform - Wikipedia, the Free Encyclopedia 01/29/2007 07:29 PM
    Laplace transform - Wikipedia, the free encyclopedia 01/29/2007 07:29 PM Laplace transform From Wikipedia, the free encyclopedia In mathematics, the Laplace transform is a powerful technique for analyzing linear time-invariant systems such as electrical circuits, harmonic oscillators, optical devices, and mechanical systems, to name just a few. Given a simple mathematical or functional description of an input or output to a system, the Laplace transform provides an alternative functional description that often simplifies the process of analyzing the behavior of the system, or in synthesizing a new system based on a set of specifications. The Laplace transform is an important concept from the branch of mathematics called functional analysis. In actual physical systems the Laplace transform is often interpreted as a transformation from the time- domain point of view, in which inputs and outputs are understood as functions of time, to the frequency- domain point of view, where the same inputs and outputs are seen as functions of complex angular frequency, or radians per unit time. This transformation not only provides a fundamentally different way to understand the behavior of the system, but it also drastically reduces the complexity of the mathematical calculations required to analyze the system. The Laplace transform has many important applications in physics, optics, electrical engineering, control engineering, signal processing, and probability theory. The Laplace transform is named in honor of mathematician and astronomer Pierre-Simon Laplace, who used the transform in his work on probability theory. The transform was discovered originally by Leonhard Euler, the prolific eighteenth-century Swiss mathematician. See also moment-generating function.
    [Show full text]
  • Stochastic Dynamic Analysis of Structures with Fractional Viscoelastic Constitutive Laws
    Universit`adegli Studi di Palermo SCUOLA POLITECNICA Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali Dottorato in Ingegneria Civile e Ambientale Ingegneria delle Strutture ciclo XXV Coor.: Prof. Orazio Giuffre` PH.D. THESIS Stochastic dynamic analysis of structures with fractional viscoelastic constitutive laws Candidato: Relatori: Ing. Francesco Paolo Pinnola Ch.mo Prof. Mario Di Paola Ch.mo Prof. Pol D. Spanos (Rice University) S.S.D. ICAR/08 Stochastic dynamic analysis of structures with fractional viscoelastic constitutive laws Ph.D thesis submitted to the University of Palermo by Francesco Paolo Pinnola Dipartimento di Ing. Civile Ambientale, Aerospaziale, dei Materiali Università degli Studi di Palermo Scuola Politecnica Viale delle Scienze, Ed. 8 - 90128 Palermo FRANCESCO PAOLO PINNOLA Palermo, December 2014 e-mail:[email protected] e-mail:[email protected] Thesis of the Ph.D. course in Structural Engineering Dipartimento di Ingegneria Civile Ambientale, Aerospaziale, dei Materiali Università degli Studi di Palermo Scuola Politecnica Viale delle Scienze, Ed.8 - 90128 Palermo, ITALY Written in LATEX Examples and figures made with Wolfram Mathematica© “Quelli che s’innamorano di pratica, sanza scienza, son come ’l nocchiere, ch’entra in navilio sanza timone o bussola, che mai ha certezza dove si vada. Sempre la pratica dev’esser edificata sopra la bona teorica...”1 1Leonardo Da Vinci (1452-1519). Contents Preface xi Introduction xiii Notation xxi 1 Special functions and integral transforms 1 1.1 Special functions ........................... 1 1.1.1 Euler gamma function .................... 1 1.1.2 Mittag-Leffler function .................... 5 1.1.3 Wright function ........................ 7 1.2 Bessel functions ............................ 7 1.2.1 Functions of the first and the second kind ........
    [Show full text]
  • The Mellin Transform Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez
    The Mellin Transform Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez To cite this version: Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez. The Mellin Transform. The Transforms and Applications Handbook, 1995, 978-1420066524. hal-03152634 HAL Id: hal-03152634 https://hal.archives-ouvertes.fr/hal-03152634 Submitted on 25 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Transforms and Applications Handbook Chapter 12 The Mellin Transform 1 Jacqueline Bertrand2 Pierre Bertrand3 Jean-Philippe Ovarlez 4 1Published as Chapter 12 in "The Transform and Applications Handbook", Ed. A.D.Poularikas , Volume of "The Electrical Engineering Handbook" series, CRC Press inc, 1995 2CNRS and University Paris VII, LPTM, 75251 PARIS, France 3ONERA/DES, BP 72, 92322 CHATILLON, France 4id. Contents 1 Introduction 1 2 The classical approach and its developments 3 2.1 Generalities on the transformation . 3 2.1.1 Definition and relation to other transformations . 3 2.1.2 Inversion formula . 5 2.1.3 Transformation of distributions. 8 2.1.4 Some properties of the transformation. 11 2.1.5 Relation to multiplicative convolution . 13 2.1.6 Hints for a practical inversion of the Mellin transformation .
    [Show full text]
  • CONTINUATIONS and FUNCTIONAL EQUATIONS the Riemann Zeta
    CONTINUATIONS AND FUNCTIONAL EQUATIONS The Riemann zeta function is initially defined as a sum, X ζ(s) = n−s; Re(s) > 1: n≥1 The first part of this writeup gives Riemann's argument that the completion of zeta, Z(s) = π−s=2Γ(s=2)ζ(s); Re(s) > 1 has a meromorphic continuation to the full s-plane, analytic except for simple poles at s = 0 and s = 1, and the continuation satisfies the functional equation Z(s) = Z(1 − s); s 2 C: The continuation is no longer defined by the sum. Instead, it is defined by a well- behaved integral-with-parameter. Essentially the same ideas apply to Dirichlet L-functions, X L(χ, s) = χ(n)n−s; Re(s) > 1: n≥1 The second part of this writeup will give their completion, continuation and func- tional equation. Contents Part 1. RIEMANN ZETA: MEROMORPHIC CONTINUATION AND FUNCTIONAL EQUATION 2 1. Fourier transform 2 2. Fourier transform of the Gaussian and its dilations 2 3. Theta function 3 4. Poisson summation; the transformation law of the theta function 3 5. Riemann zeta as the Mellin transform of theta 4 6. Meromorphic continuation and functional equation 5 Part 2. DIRICHLET L-FUNCTIONS: ANALYTIC CONTINUATION AND FUNCTIONAL EQUATION 7 7. Theta function of a primitive Dirichlet character 7 8. A Poisson summation result 7 9. Gauss sums of primitive Dirichlet characters 8 10. Dirichlet theta function transformation law 10 11. Functional equation 11 12. Quadratic root numbers 12 1 2 CONTINUATIONS AND FUNCTIONAL EQUATIONS Part 1. RIEMANN ZETA: MEROMORPHIC CONTINUATION AND FUNCTIONAL EQUATION 1.
    [Show full text]
  • HARDY SPACES the Theory of Hardy Spaces Is a Cornerstone of Modern Analysis
    CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 179 Editorial Board B. BOLLOBAS,´ W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO HARDY SPACES The theory of Hardy spaces is a cornerstone of modern analysis. It combines techniques from functional analysis, the theory of analytic functions, and Lesbesgue integration to create a powerful tool for many applications, pure and applied, from signal processing and Fourier analysis to maximum modulus principles and the Riemann zeta function. This book, aimed at beginning graduate students, introduces and develops the classical results on Hardy spaces and applies them to fundamental concrete problems in analysis. The results are illustrated with numerous solved exercises which also introduce subsidiary topics and recent developments. The reader’s understanding of the current state of the field, as well as its history, are further aided by engaging accounts of the key players and by the surveys of recent advances (with commented reference lists) that end each chapter. Such broad coverage makes this book the ideal source on Hardy spaces. Nikola¨ı Nikolski is Professor Emeritus at the Universite´ de Bordeaux working primarily in analysis and operator theory. He has been co-editor of four international journals and published numerous articles and research monographs. He has also supervised some 30 PhD students, including three Salem Prize winners. Professor Nikolski was elected Fellow of the AMS in 2013 and received the Prix Ampere` of the French Academy of Sciences in 2010. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS Editorial Board B. Bollobas,´ W. Fulton, F. Kirwan, P. Sarnak, B. Simon, B. Totaro All the titles listed below can be obtained from good booksellers or from Cambridge University Press.
    [Show full text]
  • 02MA0555 Subject Name: Special Functions-II M.Sc. Year-II (Sem-4)
    Syllabus for Master of Science Mathematics Subject Code: 02MA0555 Subject Name: Special Functions-II M.Sc. Year-II (Sem-4) Objective: This course aims at providing essential ideas of integral transforms. Numerous problems, which are not easily solvable, can be properly dealt with integral transform methods. Credits Earned: 5 Credits Course Outcomes: After completion of this course, student will be able to Understand concept of Fourier series, Fourier Integral and Fourier transform. Analyze the properties of Hankel transform, Mellin Transform and Z-transform. Perform operations with orthogonal polynomials, Legendre’s polynomial and Laguerre polynomial with their differential equations along with the corresponding recurrence formulas. Demonstrate their understanding of how physical phenomena are modeled using special functions. Explain the applications of Integral transforms and solving problems using transform method. Pre-requisite of course: Real Analysis, Complex Analysis, Differential Equations Teaching and Examination Scheme Tutorial/ Practical Teaching Scheme (Hours) Theory Marks Marks Total Credits Mid Term ESE Internal Viva Marks Theory Tutorial Practical Sem work (E) (I) (V) (M) (TW) 4 2 - 5 50 30 20 25 25 150 Contents: Unit Topics Contact Hours 1 Fourier transforms and their applications: 15 Introduction, Fourier series, Fourier integral formulas, Fourier transform of generalized functions, Basic properties of Fourier transform, Applications of Fourier transform. Syllabus for Master of Science Mathematics 2 Hankel Transforms and their applications 9 Hankel transforms and examples, Operational properties of Hankel transform, Application of Hankel transform to PDE 3 Mellin Transform and Z-trasnfrom 12 Introduction to Mellin transform, Operational properties of Mellin transform, Application of Mellin Transforms, Introduction to Z-transform, basic Operational properties of Z-transform, Inverse Z-transform and examples.
    [Show full text]