Effects of Large-Scale Transient Loading and Waste Heat Rejection on a Three Stream Variable Cycle Engine
Total Page:16
File Type:pdf, Size:1020Kb
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2011 Effects of Large-Scale Transient Loading and Waste Heat Rejection on a Three Stream Variable Cycle Engine Michael William Corbett Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Mechanical Engineering Commons Repository Citation Corbett, Michael William, "Effects of Large-Scale Transient Loading and Waste Heat Rejection on a Three Stream Variable Cycle Engine" (2011). Browse all Theses and Dissertations. 524. https://corescholar.libraries.wright.edu/etd_all/524 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. EFFECTS OF LARGE-SCALE TRANSIENT LOADING AND WASTE HEAT REJECTION ON A THREE STREAM VARIABLE CYCLE ENGINE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering By MICHAEL WILLIAM CORBETT B.S., Wright State University, 2006 2011 Wright State University Distribution Statement A: Unlimited Distribution Cleared for Public Release by AFRL/WS Public Affairs on 14 DEC 2011 Case Number 88ABW-2011-6439 The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. WRIGHT STATE UNIVERSITY GRADUATE SCHOOL December 6, 2011 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Michael William Corbett ENTITLED Effects of Large-Scale Transient Loading and Waste Heat Rejection on a Three Stream Variable Cycle Engine BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Engineering. _________________________________________ J. Mitch Wolff, Ph.D. Thesis Director _________________________________________ George P. G. Huang, Ph.D., P.E. Chair Department of Mechanical and Materials Engineering College of Engineering and Committee on Final Examination Computer Science _________________________________________ J. Mitch Wolff, Ph.D. _________________________________________ Joseph C. Slater, Ph.D., P.E. _________________________________________ Rory A. Roberts, Ph.D. _________________________________________ Nicholas J. Kuprowicz, Ph.D. _________________________________________ Andrew T. Hsu, Ph.D. Dean, Graduate School ABSTRACT Corbett, Michael William. M.S.Egr., Department of Mechanical Engineering, Wright State University, 2011. Effects of Large-Scale Transient Loading and Waste Heat Rejection on a Three Stream Variable Cycle Engine. The objective of the research presented in this document was to gain an understanding of the feasibility of extracting large amounts of transient shaft power from a variable cycle engine and to reject waste heat into the third stream bypass duct. This first required the development of a transient engine and controller simulation. After performing basic verification of the model, such as ensuring conservation of mass, tests were run for three missions using a low-efficiency periodic load which both required shaft power and created low quality waste heat. The waste heat generated by that load was lifted by a cooling system and rejected into the third stream duct. The impact of the external load and the mission conditions on cooled cooling air behavior and engine performance was assessed. Overall, the engine was capable of performing the missions, providing the required shaft power, and rejecting the waste heat to the third stream. v TABLE OF CONTENTS I. INTRODUCTION ........................................................................................................................................ 1 Overview of Variable Cycle Turbine Engines ................................................................................ 2 Overview of Engine Power Extraction ............................................................................................. 9 II. MODEL DEVELOPMENT ..................................................................................................................... 17 Engine Simulation Computational Framework ......................................................................... 17 Study Engine Model .............................................................................................................................. 19 Physics Modeled ..................................................................................................................................... 25 Ambient and Inlet Start ....................................................................................................... 25 Inlet .............................................................................................................................................. 25 Closed Loop Bridge ............................................................................................................... 26 Bleed ............................................................................................................................................ 27 Duct .............................................................................................................................................. 27 Fan/Compressor .................................................................................................................... 28 Splitter ........................................................................................................................................ 30 Duct with Air Gap and Heat Exchanger (Specified ) ............................................. 31 Fan Duct Heat Exchanger with Air Gap (Calculated ) .......................................... 34 Burner ......................................................................................................................................... 36 Turbine ....................................................................................................................................... 37 Mixer ........................................................................................................................................... 41 Afterburner ............................................................................................................................... 41 Nozzle ......................................................................................................................................... 42 Shaft ............................................................................................................................................. 42 Heat Soak ................................................................................................................................... 45 Spillage Drag ............................................................................................................................ 46 Aft Body Drag ........................................................................................................................... 47 Flow Holding ............................................................................................................................ 48 Cooled Cooling Air ................................................................................................................. 49 vi TABLE OF CONTENTS (CONTINUED) Customer Power Extraction ............................................................................................... 51 Physics Not Modeled ............................................................................................................................ 56 Controls ...................................................................................................................................................... 60 Overall Controller Structure .............................................................................................. 62 Fuel Control .............................................................................................................................. 65 Variable Geometry Control ................................................................................................ 68 III. RESULTS .................................................................................................................................................... 70 Basic Model Verification ..................................................................................................................... 70 Ground Attack Mission ........................................................................................................................ 80 Overall Mission Performance ............................................................................................ 81 Mission Leg Performance When the Periodic Load Is Inactive ........................... 94 Mission Leg Performance When the Periodic Load Is Active .............................. 95 Periodic Load Parameter Variations ........................................................................... 107 Intercept Mission ................................................................................................................................ 114 Dogfight Mission .................................................................................................................................. 120 IV. CONCLUSIONS