Chapter 15: Graphics

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 15: Graphics 443 15 Graphics From its first programs, MacPaint and MacDraw, to today’s photo- realistic 3-D images, the Mac has always dazzled us with its graphics prowess. You can see evidence of the Mac’s digital artistry everywhere you look: magazine ads, product packaging, posters, audio CDs, technical schematics, book covers, even TV commercials and hit movies. Although a computer graphics program won’t automatically make you an artist, it will let you do things that are time-consuming, expensive, or even impossible with traditional tools. With the appropriate software, you can easily draw infinite variations of a design, test different color schemes for a business logo, make an eye-catching chart for a presentation, adjust the sharpness and contrast in a scanned photograph, or create a 3-D mock-up of your latest invention. Whether you’re a first-time artist, business presenter, or professional designer, there’s a graphics package to meet your needs. In this chapter, we’ll show you the different kinds of graphics you can create on the Mac, help you pick the right applications, and reveal some tricks for getting the most out of your favorite programs. 444 Chapter 15: Graphics Contributors Contents Ted Alspach (TA) is Graphics on the Macintosh...........................................446 the chapter editor. Pixels........................................................................................446 Rob Teeple (RT) is Vectors.....................................................................................449 president of Teeple Graphics, an AppleVAR and World Wide Web Pixel-Based Graphics .....................................................450 services company. An Overview of Pixels ..............................................................450 Steven Frank (SF) is Pixelized File Formats...............................................................451 a Southern California- Painting and Image Editing......................................................453 based writer and consultant specializing Fractal Design Painter ..............................................................453 in Macintosh graphics Painting Tools ..........................................................................454 and entertainment software. Other Paint Programs ..............................................................455 Aileen Abernathy Basic Painting...........................................................................457 (AA) and Ben Long General Paint Tips....................................................................458 (BL) contributed to past editions of The Photoshop ...............................................................................460 Macintosh Bible, from Photoshop Tips ........................................................................461 which parts of this chapter were taken. Photoshop Wannabes ..............................................................464 Photoshop-Compatible Plug-Ins...............................................466 Introductory Image Editing......................................................468 Vector-Based Graphics ..................................................468 QuickDraw versus PostScript....................................................469 Bézier Curves ...........................................................................470 Draw Software .........................................................................470 Drawing Tips ...........................................................................472 Illustration Software .................................................................472 PostScript Tips .........................................................................473 Illustrator or FreeHand?............................................................473 PostScript Plug-Ins ...................................................................475 Supplementary PostScript Software .........................................477 Contents 445 3-D Graphics and Animation ........................................477 Modeling .................................................................................478 Texture Mapping .....................................................................479 Rendering ................................................................................479 The Ultimate Renderer.............................................................480 3-D Programs ..........................................................................482 The Bryce Breakthrough ..........................................................483 CAD Programs .........................................................................484 Animation Software .................................................................484 Miscellaneous Graphics Programs ................................486 Clip Art and Photo Samplers....................................................486 Graphing Software...................................................................490 446 Chapter 15: Graphics Graphics on the Macintosh (TA) Graphics created on the Macintosh can be broken down into three categories: • Pixel-based graphics are images created by a grid of differently colored pixels. Pixels are never added or deleted from these images, but their colors are changed. These graphics are often referred to as raster images. Common pixel-based graphics include scans and photographs. • Vector-based graphics are images that consist of outlines that form shapes. It takes less memory to define a shape using outlines than pixels. Vectors allow images to be printed at any resolution. Common vector-based graphics include logos and type. • 3-D graphics are graphics that exist in 3-D space. Because very few methods exist for viewing 3-D graphics, they are usually converted to either pixel-based or vector-based graphics for viewing or printing. With 3-D graphics software you can create architectural drawings and scale models. Many 3-D programs offer anima- tion capabilities. While these are the basic categories, most programs overlap into two or even three of these areas, but are primarily focused on one specific category. For instance, Adobe Photoshop is a pixel-based graphics program, but its Clipping Path feature is decid- edly vector-based. Extreme 3-D is a 3-D program, but it can import vector graphics and can export finished images as pixel-based artwork. Pixels (SF) The word pixel (from the original picture element) refers to a single dot on a com- puter monitor (or, to be technically correct, the “smallest image-forming element of a video display”). A hundred pixels, placed end to end, create a line. A thousand pixels, all lumped together, create a filled circle, square, and so on. Each pixel is a separate element, but when viewed together, they form shapes that we recognize. When you were younger, you may have pressed your face against a television screen and noticed that the images you were seeing were really just a bunch of multicolored dots. These “multicolored dots” are pixels. (If you never did this as a kid, go ahead and try it now.) A great way to picture exactly how pixel-based images are formed is to take a sheet of graph paper and start coloring in squares to form a picture of something. Up close, it looks very blocky, but if you hold it further away, the jagged edges become less clearly defined, giving your image a smoother overall appearance. This process of coloring in Graphics on the Macintosh 447 The Need for Speed (TA/AA/BL) If you plan to work with 24-bit images, 3-D graphics, or animation, you’ll need a fast Mac, lots of RAM, a spacious hard disk, and a 24-bit display. If time is money, you might also want to boost your Mac’s performance with a graphics accelerator board, particularly if you use Photoshop. There are two basic types of graphics accelerators: QuickDraw boards (also called accelerated video cards), which speed up screen redraws, and DSP (digital signal processor) cards, which ramp up certain processor-intensive operations. QuickDraw Acceleration A QuickDraw accelerator speeds up display tasks such as scrolling and zooming—particularly important if you’re working in 24-bit color and/or on a large monitor. (The acceleration isn’t limited to graphics—you’ll also be able to scroll through a spreadsheet or word processing document much faster.) Prices vary, depending on the Mac model, monitor size, screen res- olution (pixels per inch), and accelerator features. If your monitor is 16 inches or smaller, Radius’ PrecisionColor Pro 24XP ($600) is a good buy. If cost isn’t a factor, however, and you want super-fast screen redraws and goodies such as high-resolution CMYK acceleration, then an on-board DSP chip, SuperMac’s Thunder II GX•1360 ($3,300) is the way to go. DSP Acceleration The most time-consuming part of graphics work isn’t screen redraw, however, it’s the number- crunching routines used in special-effects filters, image resizing and rotation, JPEG decom- pression, and color-mode changes. Happily, DSP accelerators are tailor-made for those operations. Painter and Photoshop can use the DSP chips in AV Macs to boost performance, but don’t despair if an AV Mac isn’t in your future. DayStar Digital, Radius, and SuperMac offer DSP accelerators that make specific operations five to ten times faster on other Macs. SuperMac’s ThunderStorm for Adobe Photoshop ($500) is arguably the best (and most economical) choice. At this writing, DSP accelerators are available only for Photoshop, although the optimized filters bundled with the cards will work in most
Recommended publications
  • Object Oriented Programming
    No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows.
    [Show full text]
  • Computer Science and Software Engineering 1
    Computer Science and Software Engineering 1 Computer Science and Software Engineering Software Engineering The focus of the software engineering curriculum, which leads to the bachelor of software engineering, is on the analysis, design, verification, validation, construction, application, and maintenance of software systems. The degree program prepares students for professional careers and graduate study with a balance of computer science theory and practical application of software engineering methodology using modern software engineering environments and tools. The curriculum is based on a strong core of topics including software modeling and design, construction, process and quality assurance, intelligent and interactive systems, networks, operating systems, and computer architecture. The curriculum also enriches each student’s general education with a range of courses from science, mathematics, the humanities and the social sciences. Through advanced elective courses, the curriculum allows students to specialize in core areas of computer science and software engineering. Engineering design theory and methodology, as they apply to software systems, form an integral part of the curriculum, beginning with the first course in computing and culminating with a comprehensive senior design project, which gives students the opportunity to work in one or more significant application domains. The curriculum also emphasizes oral and written communication skills, the importance of ethical behavior, and the need for continual, life-long learning. The overall educational objectives of the Software Engineering program are for graduates of the program to attain success in their chosen profession and/or post-undergraduate studies. The undergraduate Software Engineering program is accredited by the Engineering Accreditation Commission of ABET, http:// www.abet.org.
    [Show full text]
  • Introduction to Computer Graphics and Animation
    NATIONAL OPEN UNIVERSITY OF NIGERIA COURSE CODE :CIT 371 COURSE TITLE: INTRODUCTION TO COMPUTER GRAPHICS AND ANIMATION 1 2 COURSE GUIDE CIT 371 INTRODUCTION TO COMPUTER GRAPHICS AND ANIMATION Course Team Mr. F. E. Ekpenyong (Writer) – NDA Course Editor Programme Leader Course Coordinator 3 NATIONAL OPEN UNIVERSITY OF NIGERIA National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja Nigeria e-mail: [email protected] URL: www.nou.edu.ng Published By: National Open University of Nigeria Printed 2009 ISBN: All Rights Reserved 4 CONTENTS PAGE Introduction………………………………………………………… 1 What you will Learn in this Course…………………………………. 1 Course Aims… … … … … … … … 4 Course Objectives……….… … … … … … 4 Working through this Course… … … … … … 5 The Course Material… … … … … … 5 Study Units… … … … … … … 6 Presentation Schedule… … … … … … … 7 Assessments… … … … … … … … 7 Tutor Marked Assignment… … … … … … 7 Final Examination and Grading… … … … … … 8 Course Marking Scheme… … … … … … … 8 Facilitators/Tutors and Tutorials… … … … … 9 Summary… … … … … … … … … 9 5 Introduction Computer graphics is concerned with producing images and animations (or sequences of images) using a computer. This includes the hardware and software systems used to make these images. The task of producing photo-realistic images is an extremely complex one, but this is a field that is in great demand because of the nearly limitless variety of applications. The field of computer graphics has grown enormously over the past 10–20 years, and many software systems have been developed for generating computer graphics of various sorts. This can include systems for producing 3-dimensional models of the scene to be drawn, the rendering software for drawing the images, and the associated user- interface software and hardware.
    [Show full text]
  • Computer Technology to Imitate Traditional Tie-Dye Patterns
    Advances in Engineering Research (AER), volume 117 2nd Annual International Conference on Electronics, Electrical Engineering and Information Science (EEEIS 2016) Computer technology to imitate traditional tie-dye patterns Xiao-Sha Yin1,a and Jian-Ming Wang2,b, † 1Beijing Institute of Fashion Technology, Beijing, China 2Beijing Institute of Fashion Technology, Beijing, China [email protected], [email protected] †Jian-Ming Wang Abstract. Because of its long tradition of printing and dyeing technology cycle, complicated production process, and the pollution of the environment, energy consumption in the future development of the ecological environment has hazards. By using Ultra Fractal to simulate fractal tie-dye pattern, reproduce the Chinese traditional tie-dye art, but also carry forward the traditional culture and inheritance. Keywords: Simulation; Fractal; Tie-dye. Introduction Tie-dye is an ancient folk art, handmade tie-dye all over the world, different historical and geographical environment, create tie-dye works differently[1].Since the penetration of fiber texture of the fabric, the fabric will be a strong level of color halos, even if the same graphic design, because of different method, different tightness, different water temperatures will allow the works to produce dry-changing of the results , so there will be some limitations in the design, and computer simulation can be dyed just right to fill the vacancy[2]. In recent years, through the use of computer-aided design technology graphic design, fractal pattern design and intelligent graphic design and digital printing technology and other methods combined. Wherein the graphic design software, image processing software Photoshop, graphics software Freehand, Illustrator, Corel Draw, mapping software Painter, typesetting software Pagemkae, Quark, etc.
    [Show full text]
  • Interactive Rendering in the Post-GPU Era
    Interactive Rendering In The Post-GPU Era Matt Pharr Graphics Hardware 2006 Last Five Years • Rise of programmable GPUs – 100s/GFLOPS compute – 10s/GB/s bandwidth • Architecture characteristics have deeply influenced s/w and algorithm development • Revolution in interactive graphics as software has exploited new hardware Next Five Years: A Second Revolution • Continued GPU innovation • CPUs finally providing FLOPS as well – Don’t require nearly as much parallelism • Shared memory/high bandwidth interconnect enable flexible computation model • Future role of today's graphics APIs is unclear Overview • The transition to programmable GPUs and the importance of computation in interactive rendering • New heterogeneous architectures • Implications for graphics software – Implementation challenges and opportunities – Increasing importance of software to drive complex hardware • Longer-term trends and convergence? Offline Rendering 5 Years Ago Shrek (PDI/Dreamworks) Interactive 5 Years Ago Quake 3 (id Software) Modern Offline Rendering Madagascar (PDI/Dreamworks) Modern Interactive Rendering Project Gotham Racing Modern Offline Rendering Starship Troopers 2 (Tippett Studio) Modern Interactive Rendering I-8 (Insomniac Games) What’s Happened In The Last 5 Years? • GPUs have taken advantage of semiconductor trends to deliver performance • GPU strengths/weaknesses have sparked innovation in algorithms and software – Interactive graphics is about computation • Interactive is delivering near-offline quality 1,000,000x faster GPU Architecture Has Led
    [Show full text]
  • Sun Bladetm 100 Workstation Just the Facts Copyrights
    Sun BladeTM 100 Workstation Just the Facts Copyrights ©2001 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Sun Blade, Solaris, StarOffice, Ultra, Java, Java 3D, iPlanet, OpenWindows, PGX24, PGX32, VIS, SunPCi, Sun Workstation, Solaris Resource Manager, Solstice, Solstice AutoClient, SunVTS, ShowMe, ShowMe TV, ShowMe How, AnswerBook, AnswerBook2, Sun OpenGL for Solaris, Sun StorEdge, SunMicrophone, SunATM, SunClient, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, and SunSolve are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. FireWire is a trademark of Apple Computer, Inc., used under license. OpenGL is a registered trademark of Silicon Graphics, Inc. Display PostScript and PostScript are trademarks of Adobe Systems, Incorporated, which may be registered in certain jurisdictions. Netscape is a trademark of Netscape Communications Corporation. Last update: 9/22/01 Just the Facts September 2001 2 Table of Contents Positioning............................................................................................................................................................5
    [Show full text]
  • Chapter 3 Application Software Chapter 3 Objectives Application
    Chapter 3 Objectives Identify the widely used Define application software application software products and explain their key features Understand how system software interacts with Identify various products application software available as Web applications Identify the role of the user Describe the learning aids Chapter 3 interface available with many software applications Application Software Explain how to start a software application Next p. 3.2 Application Software Application Software What is application software? What are the categories of application software? To serve as a productivity/ • Programs that business tool perform specific To assist with tasks for users graphics and • Also called a multimedia projects software application or an To support application household activities, • Several reasons to for personal use application business, or for education software To facilitate communications Next Next p. 3.2 p. 3.2 Fig. 3-1 Application Software Application Software What is system software? What is an antivirus program? • Programs that • A utility that prevents, detects, and removes viruses control the from a computer’s memory or storage devices operations of the computer • Serves as the Some interface viruses between the destroy or user, the corrupt data application software, and the computer's hardware Next Next p. 3.3 Fig. 3-2 p. 3.3 Fig. 3-3 1 Application Software Application Software What is an application window? What is a menu? command • A rectangular • A menu Start menu area of the contains title bar screen that commands Accessories submenu displays a you can All Programs toolbar submenu program, data, select and/or information shortcut Imaging program menu command Next Start button Next Paint p.
    [Show full text]
  • Trends and Developments in Computer Graphics
    - 147 - THE GRAPHICS FUTURE IN SCIENTIFIC APPLICATIONS - Trends and developments in computer graphics - G. Enderle Kernforschungszentrum Karlsruhe Karlsruhe, West Germany ABSTRACT Computer graphics methods and tools are being used to a great extent in scientific research. The future develop• ment in this area will be influenced both by new hard• ware developments and by software advances. On the hardware sector, the development of the raster techno• logy will lead to the increased use of colour worksta• tions with more local processing power. Colour hardcopy devices for creating plots, slides, or movies will be available at a lower price than today. The first real 3D-workstations appear on the marketplace. One of the main activities on the software sector is the standard• ization of computer graphics systems, graphical files, and device interfaces. This will lead to more portable graphical application programs and to a common base for computer graphics education. 1. INTRODUCTION In a scientific environment, computer graphics are used for a broad spectrum of applications, on a large number of different graphical devices, and using a variety of graphics software. The main application areas are: - Data presentation: Data generated by experiments as well as by compu• ter simulations have to be presented in a way suitable for interpreta• tion by researchers. The presentations also serve for communications between different persons^'. - Modelling: The models used as input data for simulation programs are set up under visual control by the operator. The visual representation is an aid to control the validity of the models. Computer graphics also provide the basic tools for the communication with the interactive operator and for his guidance.
    [Show full text]
  • The Computer Graphics Scene in the United States
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science 1984 The Computer Graphics Scene in the United States Norman I. Badler University of Pennsylvania, [email protected] Ingrid Carlbom Follow this and additional works at: https://repository.upenn.edu/cis_reports Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Norman I. Badler and Ingrid Carlbom, "The Computer Graphics Scene in the United States", . January 1984. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-84-14. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/1008 For more information, please contact [email protected]. The Computer Graphics Scene in the United States Abstract We briefly survey the major thrusts of computer graphics activities, examining trends and topics rather than offering a comprehensive survey of all that is happening. The directions of professional activities, hardware, software, and algorithms are outlined. Within hardware we examine workstations, personal graphics systems, high performance systems, and low level VLSI chips; within software, standards and interactive system design; within algorithms, visible surface rendering and shading, three-dimensional modeling techniques, and animation. Disciplines Computer Engineering | Computer Sciences Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MS- CIS-84-14. This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/1008 THE COMPUTER GRAPffiCS SCENE IN THE UNITED STATES Norman I. Badler Ingrid Carlbom MS-CIS-84-14 Department of Computer and Information Science Moore School/D2 University of Pennsylvania Philadelphia, P A 19104 1984 ..Acknowledgement: NASAgrant NAS!i-16634 and NAS9-17239.
    [Show full text]
  • Computer Science
    COMPUTER SCIENCE Program Coordinator: Ivona Grzegorczyk, Associate Professor of Mathematics Phone: (805) 437-8868 Fax: (805) 437-8864 Web Page: http://www.csuci.edu Email: [email protected] DEGREE OFFERED: Bachelor of Science in Computer Science Minor in Computer Science THE MAJOR: The Computer Science degree at Channel Islands offers latest, cutting edge education for various industrial and applied fields. The program will prepare students for careers in high-tech, computer and Internet driven industries, where interdisciplinary, dynamic and innovative professionals trained in latest technologies are increasingly sought. Students will be given a strong background in computer hardware and software, as well as a substantial amount of “hands-on” experience. The program will stress interdisciplinary applications in other sciences and business. PROPOSED COURSE OF STUDY: FRESHMAN YEAR (30 Units) ENGL 100 Composition and Rhetoric (3, G.E. A1) MATH 150 Calculus 1 (4, G.E B3) COMP 150 Object Oriented Programming (4) G.E. Section A, C, D, or E (3) MATH 151 Calculus 2 (4) MATH/PHIL 230 Logic (3, G.E. A3 or C3) COMP 151 Data Structures and Program Design (3) COMP 162 Comp. Architecture and Assembly Language(3) G.E. Section A, C, D, or E (3) SOPHOMORE YEAR (28-31 Units) MATH 240 Linear Algebra (3) COMP 232 Programming Languages (3) COMP 262 Computer Organization and Architecture (3) MATH 300 Discrete Mathematics (3) MGT 346 Scientific and Professional Ethics (3, G.E. D) Select one 2 semester science sequence and an additional science course (one lab section required) in Physics, Biology, or Chemistry ( 13-16, G.E.
    [Show full text]
  • Advantages and Implementation of HP Remote Graphics Software
    Advantages and Implementation of HP Remote Graphics Software HP Remote Graphics Software enables 2D and 3D real-time interactive graphics and collaboration from a distance. Executive Overview...................................................................................2 Introduction ..............................................................................................3 HP Remote Graphics Software ...................................................................4 Overview ..............................................................................................4 Features ................................................................................................4 Components..........................................................................................5 Typical Deployments ..............................................................................9 Conclusions ............................................................................................10 For more information ..............................................................................11 Executive Overview HP Remote Graphics Software (HP RGS) efficiently transmits complex 2D and 3D images from a sender system across standard computer networks to remote users. The remote users interact with a host sender system and its applications as if they were using a local workstation. HP RGS allows users to work with applications and data remotely—for example on the road with a laptop. It enables display of 2D/3D graphics, full motion video, and
    [Show full text]
  • Appendix: Graphics Software Took
    Appendix: Graphics Software Took Appendix Objectives: • Provide a comprehensive list of graphics software tools. • Categorize graphics tools according to their applications. Many tools come with multiple functions. We put a primary category name behind a tool name in the alphabetic index, and put a tool name into multiple categories in the categorized index according to its functions. A.I. Graphics Tools Listed by Categories We have no intention of rating any of the tools. Many tools in the same category are not necessarily of the same quality or at the same capacity level. For example, a software tool may be just a simple function of another powerful package, but it may be free. Low4evel Graphics Libraries 1. DirectX/DirectSD - - 248 2. GKS-3D - - - 278 3. Mesa 342 4. Microsystem 3D Graphic Tools 346 5. OpenGL 370 6. OpenGL For Java (GL4Java; Maps OpenGL and GLU APIs to Java) 281 7. PHIGS 383 8. QuickDraw3D 398 9. XGL - 497 138 Appendix: Graphics Software Toois Visualization Tools 1. 3D Grapher (Illustrates and solves mathematical equations in 2D and 3D) 160 2. 3D Studio VIZ (Architectural and industrial designs and concepts) 167 3. 3DField (Elevation data visualization) 171 4. 3DVIEWNIX (Image, volume, soft tissue display, kinematic analysis) 173 5. Amira (Medicine, biology, chemistry, physics, or engineering data) 193 6. Analyze (MRI, CT, PET, and SPECT) 197 7. AVS (Comprehensive suite of data visualization and analysis) 211 8. Blueberry (Virtual landscape and terrain from real map data) 221 9. Dice (Data organization, runtime visualization, and graphical user interface tools) 247 10. Enliten (Views, analyzes, and manipulates complex visualization scenarios) 260 11.
    [Show full text]