Oak Ridge National Laboratory Sic/Sic Composites Technology Gap Analysis for Molten Salt Reactors
Total Page:16
File Type:pdf, Size:1020Kb
ORNL/TM-2018/842 Oak Ridge National Laboratory SiC/SiC Composites Technology Gap Analysis for Molten Salt Reactors Josina W. Geringer Takaaki Koyanagi Yoonjo Lee Yutai Katoh Approved for public release. Distribution is unlimited. June 2018 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website www.osti.gov Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://classic.ntis.gov/ Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL/TM-2018/842 Material Science and Technology Division SIC/SIC COMPOSITES TECHNOLOGY GAP ANALYSIS FOR MOLTEN SALT REACTORS Authors: Josina W. Geringer Takaaki Koyanagi Yoonjo Lee Yutai Katoh Date Published: June 2018 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, TN 37831-6283 managed by UT-BATTELLE, LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 CONTENTS EXECUTIVE SUMMARY ....................................................................................................................... viii ACKNOWLEDGMENTS .......................................................................................................................... xii 1. INTRODUCTION ................................................................................................................................ 1 2. DESIGN METHODOLOGY ................................................................................................................ 2 2.1 TYPES OF REACTORS AND DESIGN MATURITY ............................................................. 2 2.2 TYPICAL APPLICATIONS FOR SIC COMPONENTS, FUNCTION, GENERAL REQUIREMENTS, AND REACTOR LOCATION .................................................................. 5 2.3 TYPICAL TEMPERATURES, FLUENCE, AND LOADING CONDITIONS ...................... 11 2.4 CODE DEVELOPMENT ACTIVITIES FOR SiC STRUCTURAL MATERIALS ................ 13 2.5 LICENSING ASPECTS ........................................................................................................... 16 2.6 THE TECHNOLOGY GAPS IN THE DESIGN METHODOLOGY ...................................... 17 3. MATERIALS AND MANUFACTURING ........................................................................................ 18 3.1 COMPOSITES: FIBERS, MATRICES, AND INTERFACE .................................................. 18 3.1.1 Fiber ............................................................................................................................. 18 3.1.2 Matrix ........................................................................................................................... 19 3.1.3 Interface ....................................................................................................................... 20 3.2 JOINING AND INTEGRATION TECHNOLOGIES .............................................................. 20 3.2.1 Joint Processing ........................................................................................................... 21 3.2.2 Assembly Technologies ............................................................................................... 21 3.2.3 Properties of the Joints ................................................................................................. 22 3.3 FABRICATION OF SiC COMPONENTS ............................................................................... 23 3.4 TECHNOLOGY GAPS FOR SiC/SiC MATERIALS AND MANUFACTURING ................ 27 4. PROPERTIES AND RADIATION EFFECTS .................................................................................. 28 4.1 IRRADIATION EFFECTS ....................................................................................................... 28 4.1.1 Dimensional Stability ................................................................................................... 28 4.1.2 Mechanical Properties .................................................................................................. 29 4.1.3 Thermal Properties ....................................................................................................... 30 4.2 MICRO-CRACKING RELATED ISSUES .............................................................................. 31 4.3 TECHNOLOGY GAPS IN THE PHYSICAL/MECHANICAL PROPERTIES AND RADIATION EFFECTS ........................................................................................................... 32 5. CHEMICAL COMPATIBILITY ....................................................................................................... 33 5.1 MODES OF SiC CORROSION ............................................................................................... 33 5.1.2 SiC interactions with moisture-based impurities, tritium, and gaseous fission products ........................................................................................................................ 36 5.2 THERMOPHYSICAL PROPERTIES OF SALTS .................................................................. 40 5.2.1 Physical Chemistry of Candidate Coolant Salts ........................................................... 40 5.3 THE TECHNOLOGY GAPS FOR CHEMICAL COMPATIBILITy ...................................... 45 6. CONCLUSION AND PATH FORWARD ......................................................................................... 46 7. REFERENCES ................................................................................................................................... 48 7.1 SECTION 1 ............................................................................................................................... 48 7.2 SECTION 2 ............................................................................................................................... 48 7.3 SECTION 3 ............................................................................................................................... 49 7.4 SECTION 4 ............................................................................................................................... 51 7.5 SECTION 5 ............................................................................................................................... 52 iii LIST OF FIGURES Figure 2.1. Comparative neutron flux spectra normalized to neutron energy between the AHTR, GT-MHR, PB-AHTR, and a pressurized water reactor [PWR]. ...................................................... 4 Figure 2.2. Neutron spectrum in a zirconium hydride–moderated TAP LFMSR at the beginning and end of life. ................................................................................................................................. 4 Figure 2.3. Stress-strain curves for (a) weak interface ceramics (SiC/SiC) and (b) weak matrix ceramics (C/C) composites. ............................................................................................................. 6 Figure 2.4. Elevation view of the FHR-DR showing the reactor core within the vessel. ............................. 7 Figure 2.5. The Sm-AHTR annular cylindrical fuel option fuel bundle isometric and cross section view with the graphite channel. ....................................................................................................... 7 Figure 2.6. The Sm-AHTR and AHTR fuel assembly designs. .................................................................... 8 Figure 2.7. Top portion of the AHTR control blade. .................................................................................... 9 Figure 2.8. TMSR-SF cross-sectional view. ............................................................................................... 10 Figure 2.9. AHTR reference core. ............................................................................................................... 11 Figure 2.10. FHR-DR radial averaged fuel temperature. ............................................................................ 11 Figure 2.11. The AHTR reference core modelled fuel temperatures. ......................................................... 12 Figure 2.12. Region wise fast flux (E >50 keV) in the AHTR