Products of the Reaction of Phenyihydrazine With

Total Page:16

File Type:pdf, Size:1020Kb

Products of the Reaction of Phenyihydrazine With Proc. NatL Acad. Sci. USA Vol. 78, No. 9, pp. 5508-5512, September 1981 Biochemistry (3meso-Phenylbiliverdin IXa and N-phenylprotoporphyrin IX, products of the reaction of phenyihydrazine with oxyhemoproteins (neso-tolylbiliverdin/N-tolylprotoporphyrin/Heinz body anemia/oxyhemoglobin/oxymyoglobm) SETSUO SArrO AND HARVEY A. ITANO Department of Pathology, D-006, University of California, San Diego, La Jolla, California 92093 Contributed by Harvey A. Itano, June 12, 1981 ABSTRACT Oxyhemoglobin and oxymyoglobin were allowed EXPERIMENTAL PROCEDURES to react aerobically with phenylhydrazine and p-tolylhydrazine. The chloroform extract ofeach reaction mixture, after treatment Materials and Methods. To a solution of metmyoglobin (5 with H2SOdmethanol, yielded a blue pigment and a.green pig- g, type III from horse heart, Sigma) in potassium phosphate ment, which were identified by electronic absorption, mass, and buffer (pH 7.4, 0.01 M, 200 ml), a 50-fold excess of powdered proton NMR spectroscopy as the dimethyl esters of -mao-ar- Na2S204 was added under N2. This mixture was applied onto ylbiliverdin IXa and N-arylprotoporphyrin IX, respectively. N- a column of Sephadex G-25 (5 cm inside diameter x 30 cm) Phenyiprotoporphyrin IX dimethyl ester formed complexes, with equilibrated with phosphate buffer (pH 7.4, 0.01 M) and was Zn2+, Cd'+, and Hg'+ but not with other cations. The proton eluted from the column with the same buffer. The eluate was NMR spectrum of the zinc complex suggested binding of the dialyzed against phosphate buffer (pH 7.4, 0.1 M, 4 liters) to phenyl group to one ofthe two pyrrole rings ofprotoporphyrin IX obtain a solution ofoxymyoglobin (3.58 g, 72% yield). Washed with a propionic acid substitutent. The effectiveness ofphenylhy- human erythrocytes were lysed with 3 vol ofdistilled water and drazine as an inducer ofHeinz body formation may be due to de- centrifuged at 12,000 X g for 90 min to obtain a clear solution stabilization of the hemoglobin. molecule by the replacement of of hemolysate. This solution was dialyzed against phosphate heme with phenyl adducts ofbiliverdin and protoporphyrin. buffer (pH 7.4, 0.1 M, 4 liters), and the resulting dialysate was used for reactions of oxyhemoglobin. Biliverdin IX, obtained The green hemoglobin produced in the reaction ofhemoglobin by coupled oxidation ofhemin, myoglobin, or hemoglobin with with phenylhydrazine was found by Kiese and Seipelt (1) to ascorbic acid (7, 8), was esterified in 7% H2SO4 in methanol. * differ from verdoglobins produced by other reagents. Lemberg The isomers ofbiliverdin IX dimethyl ester were separated by and Legge (2) showed that biliverdin production was increased thin-layer chromatography (TLC) (9). Phenylhydrazine-HCl in the erythrocytes ofrabbits treated with phenylhydrazine, and and p-tolylhydrazine HCl (Aldrich) were recrystallized from they concluded that this in vivo result of phenylhydrazine ac- ethanol before use. SilicAR cc-7 Special (Mallinckrodt) was used tivity corresponded to the in vitro formation ofbiliverdin in the for column chromatography. Uniplate (Silica Gel G, Analtech) coupled oxidation ofhemoglobin and ascorbic acid. Beaven and was used for analytical and preparative TLC. Electron impact White (3), on the other hand, did not obtain biliverdin in the mass spectra were obtained on an LKB type 9000 spectrometer in vitro reaction of phenylhydrazine with oxyhemoglobin; in- at an ionizing energy of70 eV by the direct inlet method. Field stead they isolated a green pigment with an absorption band in desorption mass spectra were obtained on a Kratos/AEI MS- the Soret region suggestive of an intact porphyrin ring. 902 instrument. Optical spectra were recorded on a Cary model Studies from this laboratory indicated that substituents on 17 spectrophotometer. Proton nuclear magnetic resonance the benzene ring affected the hemolytic activity of substituted (NMR) spectra of samples in C2HC13 solution containing inter- phenylhydrazine and the binding ofsubstituted phenyldiazenes nal tetramethylsilane were recorded with a custom-designed to methemoglobin in parallel fashion (4). Subsequent studies 360-MHz spectrometer with 200-400 pulses in the Fourier- showed, however, that the hemolytic activity of ring-substi- transform mode. High-performance liquid chromatography was tuted nitrosobenzenes was not related to their affinities as li- carried out with the Altex model 334 system. A Whatman Par- gands ofdeoxyhemoglobin (5). tisil 10-PAC column (4.6 x 250 mm) preceded by a short Partisil A two-electron transfer to oxyhemoglobin was suggested as 10 protective precolumn was used. Mass spectra of the four the initial step in the degradation ofheme mediated by ascorbic isomers ofbiliverdin IX dimethyl ester and the NMR spectrum acid (6), and the same transfer was postulated in the reaction of biliverdin IXa dimethyl ester were obtained for use as ofphenylhydrazine with oxyhemoglobin (4). Although the pro- standards. cesses may be initiated in the same way, different reported Blue (I) and Green (II) Pigments from the Reaction ofPhen- products, biliverdin with ascorbic acid (2) and an intact por- ylhydrazine with Oxymyoglobin. A solution of phenylhydra- phyrin with phenyihydrazine (3), indicate that subsequent steps zine-HCl (188 mg) in phosphate buffer (pH 7.4, 0.1 M, 100 ml) are different. We therefore undertook to isolate and character- was added to 500 ml of260 jLM oxymyoglobin in the same buf- ize the products of heme degradation when hemoglobin is fer, and the reaction mixture was allowed to stand for 1 hr under treated with arylhydrazines, and we found two types of com- aerobic conditions with occasional shaking. Acetic acid (400 ml) pounds: one is a biliverdin IXa derivative with an aryl group and concentrated HC1 (100 ml) were then added to 0C. After on a meso carbon, and the other is a protoporphyrin IX deriv- 20 hr at 40C, the reaction mixture was extracted twice with chlo- ative with an aryl group on a pyrrole nitrogen. roform (300 ml and 150 ml). The extracts were gathered, washed The publication costs ofthis article were defrayed in part by page charge Abbreviations: TLC, thin-layer chromatography; Fe", deoxyhemopro- payment. This article must therefore be hereby marked "advertise- tein; FeII02, oxyhemoprotein. ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact. * All reagent percentages and solvent ratios are vol/vol. 5508 Downloaded by guest on October 1, 2021 Biochemistry: Saito and Itano Proc. Natd Acad. Sci. USA 78 (1981) 5509 with distilled water, dried over anhydrous Na2SO4, filtered, and globin (227 pM) in phosphate buffer (pH 7.4, 0.1 M, 600 ml), evaporated to obtain residue A (99.5 mg, 59.9% yield from a solution ofphenylhydrazine-HCl (800 mg) in the same buffer phenylprotoporphyrin, Mr 638). A solution ofthis residue in 7% (100 ml) was added. The procedure described above to obtain H2S04 in methanol (100 ml) at 0C was allowed to stand for 18 residue A was used to obtain residue C (405 mg, 57.3% yield hr at 4TC, diluted with cold distilled water (150 ml), and ex- from phenylprotoporphyrin, Mr 638). The crude product from tracted twice with chloroform (200 ml and 100 ml). The extracts the treatment of residue C with 7% H2SO4 in methanol was were treated as described above to obtain a residue that showed applied onto a silica gel column (5 cm inside diameter X 20 cm) a minor blue spot (RF: 0.47 in 4:1 benzene/acetone, 0.90 in 22:3 and eluted with the following solvents: 100% chloroform (200 chloroform/ethanol), a major green spot (RF: 0.02 in 4:1 ben- ml), 5% acetone in chloroform (200 ml), 5% methanol in chlo- zene/acetone, 0.20 in 22:3 chloroform/ethanol), and some roform (200 ml), and 10% methanol in chloroform (400 ml). The brown spots by TLC. The residue was applied onto a silica gel 5% acetone eluate was evaporated to give a residue that showed column (1.5 cm inside diameter x 12 cm) and eluted in succes- a major blue spot (RF: 0.47 in 4:1 benzene/acetone and a minor sion with the following solvents: 100% chloroform (100 ml), 3% blue spot (RF: 0.53 in 4:1 benzene/acetone) that overlapped a acetone in chloroform (50 ml), 5% acetone in chloroform (50 ml), brown spot by TLC. The major blue pigment (43mg, 9.9% from 5% methanol in chloroform (150 ml), and 10% methanol in chlo- residue C) was isolated and purified by preparative TLC. This roform (300 ml). The 5% acetone eluate was evaporated to ob- blue pigment was the same as pigment I obtained from the re- tain a blue oil (I, 13 mg, 12% yield from residue A), which was action of oxymyoglobin with phenylhydrazine according to its further purified by preparative TLC (silica gel, 4:1 benzene/ TLC behavior, electronic absorption spectrum, and NMR spec- acetone) for spectral determinations. Mass spectrum m/e (rel- trum. The 10% methanol eluate was evaporated to give a res- ative intensity): 686 (parent ion M+, 2.0), 567 (14.0), 478 (3.6), idue from which a green pigment (184 mg, 43.5% yield from 404 (3.6), 402 (3.4), 390 (56.8), 376 (100), 361 (4.5), 359 (3.6), residue C) was isolated by preparative TLC. The TLC and spec- 347(4.0), 345 (5.9), 317 (20.5), 314 (9.8), 303 (20.0), 300 (36.0), tral properties of this green pigment were the same as those of 287 (50.0), 241 (22.7), 227 (40.9), 199 (27.3), 181 (22.6), 180 pigment II from the reaction of oxymyoglobin with (22.7), 122 (22.7), 155 (13.6), 108 (40.9). NMR spectrum (in phenylhydrazine. C2HC13; 6 in ppm; m, multiplet; s, singlet) 6: 1.60 (CH3), 1.94 Zinc Complex of Green Pigment II.
Recommended publications
  • On Conducting Polymer Coated Electrodes: a Versatile Platform for the Modification of Electrode Surfacesa
    Full Paper http://www.paper.edu.cn ‘‘Click’’ on Conducting Polymer Coated Electrodes: A Versatile Platform for the Modification of Electrode Surfacesa Yan Li, Weixia Zhang, Jing Chang, Jinchun Chen, Guangtao Li,* Yong Ju* Two types of N-substituted pyrroles with azide and terminal alkyne groups have been synthesized and electropolymerized. ‘‘Click’’ chemistry, specifically Huisgen 1,3-dipolar cycloaddition, was used as a general method for functionalization of the polypyrrole films. Several model compounds, including redox active (quinone), bioactive (cholic acid) and recognition elements (carbohydrate and thymi- dine) could easily be attached onto the electrode surfaces without loss of functionality or the elec- troactivity of the underlying conducting polymers. The results suggest that the polypyrrole films are clickable and provide a novel biocompatible and versatile platform for efficient modifications on electrode surfaces. Introduction catalysis.[1,2] A key factor in such investigations and applications is the achievement of an efficient interface The immobilization of functional units, such as electro- between the functional groups and the conductive active, bioactive and biological recognition elements, onto surface.[3,4] conductive surfaces is of enormous interest, both in Compared to various protocols developed for confining studies of functional groups themselves and in numerous functional units onto solid surfaces, electrodeposition of applications ranging from disease diagnosis to electro- conducting polymers offers a simple and
    [Show full text]
  • Heterocycles 2 Daniel Palleros
    Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted.
    [Show full text]
  • Combined Experimental and Theoretical Study of Poly(Aniline-Co-Pyrrole) Oligomer
    ORE Open Research Exeter TITLE Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer AUTHORS Kamran, Muhammad; Ullah, Habib; Shah, Anwar-ul-Haq A.; et al. JOURNAL Polymer DEPOSITED IN ORE 15 March 2016 This version available at http://hdl.handle.net/10871/20729 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Combined Experimental and Theoretical Study of Poly(Aniline-co-Pyrrole) Oligomer Habib Ullah*,a,b, Muhammad Kamranb, Salma Bibic, Anwar-ul-Haq A. Shah*,b, Asif A. Tahira, Khurshid Ayub*,d aEnvironment and Sustainability Institute (ESI), University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK bInstitute of Chemical Sciences, University of Peshawar, 25120 Peshawar, Pakistan cNational Centre of Excellence in Physical Chemistry, University of Peshawar, 25120 Peshawar, Pakistan. dDepartment of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, 22060 Abbottabad, Pakistan * To whom corresponding should be addressed Email: [email protected] Abstract Quantum mechanical calculations are performed to establish the structure of an oligomer of aniline and pyrrole [Poly(Ani-co-Py)], through comparison of experimental and theoretically calculated properties, including conductivity. The copolymer was synthesized through chemical oxidative polymerization and then confirmed from the experimental IR, UV-vis, mass spectra, elemental, XRD, TGA, and SEM analysis. Quantum mechanical calculations are performed at Density Functional Theory (DFT) and Time dependent DFT (TD-DFT) methods for the electronic and spectroscopic properties of the oligomer.
    [Show full text]
  • Reactions of Pyrrole, Imidazole, and Pyrazole with Ozone
    Environmental Science Water Research & Technology View Article Online PAPER View Journal | View Issue Reactions of pyrrole, imidazole, and pyrazole with † Cite this: Environ. Sci.: Water Res. ozone: kinetics and mechanisms Technol., 2020, 6,976 Agnes Tekle-Röttering,‡a Sungeun Lim, ‡bc Erika Reisz,d Holger V. Lutze,efgj Mohammad Sajjad Abdighahroudi, e Sarah Willach,e Winfried Schmidt,af Peter R. Tentscher,h Daniel Rentsch, i Christa S. McArdell, b Torsten C. Schmidt *efg and Urs von Gunten*bc Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in com- plex structures where transformations during ozonation can occur. This study focused on the azole–ozone chemistry of pyrrole, imidazole, and pyrazole as model compounds. Reaction kinetics and ozonation products were determined by kinetic and analytical methods including NMR, LC-HRMS/MS, HPLC-UV, and IC-MS. 1 Analyses of reactive oxygen species ( O2, ˙OH, H2O2), quantum chemical computations (Gibbs energies), and kinetic simulations were used to further support the proposed reaction mechanisms. The species-specific 6 −1 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. second-order rate constants for the reactions of ozone with pyrrole and imidazole were (1.4 ± 1.1) × 10 M −1 5 −1 −1 s and (2.3 ± 0.1) × 10 M s , respectively. Pyrazole reacted more slowly with ozone at pH 7 (kapp =(5.6± 0.9) × 101 M−1 s−1). Maleimide was an identified product of pyrrole with a 34% yield. Together with other prod- ucts,formate,formamide,andglyoxal,CandNmassbalancesof∼50% were achieved. Imidazole reacted with ozone to cyanate, formamide, and formate (∼100% yields per transformed imidazole, respectively) with a closed mass balance.
    [Show full text]
  • CONCISE STUDY NOTES for BG 4Th Semester (UNIT: Amines and Heterocyclic Compounds)
    CONCISE STUDY NOTES FOR BG 4th Semester (UNIT: Amines and Heterocyclic Compounds) Syllabus Amines: Classification and factors affecting basicity of amines. Mechanistic details (wherever applicable) of methods of formation of alkyl and arylamines through reduction of nitro compounds and nitriles. Gabriel-Phthalamide reaction and Hofmann rearrangement. Mechanisms involved in the formation and reactions of arenediazonium salts including Azo coupling. Heterocyclic compounds bearing one nitrogen atom: Stuctural features of pyrrole, pyrrolidine, pyridine and piperidine and comparative account of their basic strength. Aromaticity and electrophilic substitution reactions of pyrrole and their comparison with those of furan and thiophene.Mechanisms involved in the preparations of Indole and quinoline using Fischer-Indole and Bishlier-Napierlaski syntheses. Amines: Their classification Alkyl, aryl and ar-alkyl derivatives of ammonia are known as amines General formula is RNH2, R2NH, R3NH, where R can be any alkyl, aryl or aralkyl group. Amines are classified in to primary, secondary and tertiary amines depending upon the number of Hydrogen atoms in ammonia replaced by alkyl or aryl group. If one of hydrogen atom in NH3 is replaced by alkyl or aryl group, the derivative of ammonia so obtained is known as primary amine, if two hydrogen atoms in ammonia are replaced by alkyl, aryl or ar-alkyl groups, the derivative obtained is known as secondary amine, while as if all H atoms in ammonia are replaced by alkyl aryl or aralkyl groups, a tertiaty amine is obtained as shown below: The R groups can be alkyl, aryl or aralkyl groups. Further a secondary or tertiary amine may contain same or different R groups.
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • N-Methylprotoporphyrin IX: Chemical Synthesis and Identification
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 3, pp. 1490-1494, March 1981 Biochemistry N-Methylprotoporphyrin IX: Chemical synthesis and identification as the green pigment produced by 3,5-diethoxycarbonyl-1,4- dihydrocollidine treatment (N-alkyl porphyrins/porphyrin synthesis/ferrochelatase inhibitor/NMR) PAUL R. ORTIZ DE MONTELLANO, HAL S. BEILAN, AND KENT L. KUNZE Department of Pharmaceutical Chemistry, School of Pharmacy, and Liver Center, University of California, San Francisco, California 94143 Communicated by Rudi Schmid, November 24, 1980 ABSTRACT The hepatic pigment accumulated in 3,5-di- mitochondrial ferrochelatase (13, 14). The differential physio- ethoxycarbonyl-1,4-dihydrocollidine-treated rats, which has been logical effects of AIA and DDC are thus related, at least in part, reported to inhibit ferrochelatase, has been isolated and purified. to differences in the structures of the accompanying The pigment has been resolved into one major, one minor, and hepatic two trace components, all of which appear to be isomeric por- pigments. In concert with our efforts to define the structure of phyrins. The major fraction has been unambiguously identified the abnormal porphyrins due to AIA and other unsaturated byspectroscopic methods as the isomer of N-methyprotopor- agents (9, 10, 15, 16), we have undertaken a structural inves- phyrin IX (isolated as the dimethyl ester) in which vinyl-substituted tigation of the DDC-induced pigment. We report here un- pyrrole ring A is methylated. The minor product appears to be an ambiguous spectroscopic identification of the DDC pigment isomer of the same porphyrin with the N-methyl group on pro- as N-methylprotoporphyrin IX (dimethyl ester), confirmation pionic acid-substituted ring C, and the trace components have the same high-pressure liquid chromatography retention times as the of this structural assignment by chemical synthesis of the four other two possible isomers of the porphyrin.
    [Show full text]
  • Strecker Degradation Products of Aspartic and Glutamic Acids and Their Amides
    Czech J. Food Sci. Vol. 19, No. 2: 41–45 Strecker Degradation Products of Aspartic and Glutamic Acids and their Amides JAN RÖSSNER, JAN VELÍEK, FRANTIEK PUDIL and JIØÍ DAVÍDEK Institute of Chemical Technology Department of Food Chemistry and Analysis, Prague, Czech Republic Abstract RÖSSNER J., VELÍEK J., PUDIL F., DAVÍDEK J. (2001): Strecker degradation products of aspartic and glutamic acids and their amides. Czech J. Food Sci., 19: 4145. Aspartic and glutamic acids, asparagine and glutamine were oxidised with either potassium peroxodisulphate or glyoxal. Non- volatile products were derivatised and analysed by GC/FID and GC/MS. Volatile reaction products were isolated and analysed by the same methods. It was found that the degradation reactions of amino acids are complex. Amino acids are principally degraded via the corresponding α-keto acids to Strecker aldehydes (aspartic acid to oxalacetic and 3-oxopropionic acids and glutamic acid to α-ketoglutaric and 4-oxobutyric acids), which are unstable and decomposed by decarboxylation to the corresponding alde- hydes. Aspartic acid also eliminates ammonia and yields fumaric acid whereas glutamic acid gives rise to an imine, pyroglutamic acid. A recombination of free radicals leads to dicarboxylic acids (succinic acid from aspartic acid, succinic, glutaric and adipic acids from glutamic acid). The major volatile products (besides the aldehydes) are lower carboxylic acids (acetic acid from aspartic acid and propionic acid acid from glutamic acid) that can at least partly arise by radical reactions. In both quality and quantity terms, a higher amount of degradation products arises by oxidation of amino acids by peroxodisulphate. Keywords: Strecker degradation; Strecker aldehydes; amino acids; glyoxal; sodium peroxodisulphate; aspartic acid; glutamic acid; asparagine; glutamine; radicals The reaction of an α-amino acid with an oxidation re- asparagine (Asn) and glutamine (Gln).
    [Show full text]
  • Indole & Pyrrole Synthesis: Cliffsnotes (Richter, 2004)
    9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disclaimer: Indole: This lecture will only cover methodology for the construction of the indole and pyrrole ring systems, rather than functionalionalization of pre-existing heterocycles, Nature: which would be the topic of another series of lectures. – The most abundant heterocycle in nature – Found in tryptophan, indole-3-acetic acid (plant growth hormone), Partial List of Transforms Discussed: serotonin (neurotransmitter), natural products, drugs – Isolated industrially from coal tar 1. Batcho-Leimgruber Indole Synthesis – Biosynthesis of tryptophan 2. Reissert Indole Synthesis CO H 3. Hegedus Indole Synthesis 15 2 3 serine 4. Fukuyama Indole Synthesis glucose Steps NH Steps N 5. Sugasawa Indole Synthesis 2 H 6. Bischler Indole Synthesis anthranilate 7. Gassman Indole Synthesis tryptophan 8. Fischer Indole Synthesis 9. Japp-Klingemann Indole Synthesis Reactivity: 10. Buchwald Indole Synthesis C–4 C–3 11. Bucherer Carbazole Synthesis C–5 C–2 12. Japp-Maitland Carbazole Synthesis C–6 N 13. Larock Indole Synthesis C–7 H 14. Bartoli Indole Synthesis 15. Castro Indole Synthesis – Isoelectronic with naphthalene (slightly lower stabilization energy) 16. Hemetsberger Indole Synthesis – Indole has a higher stabilization energy than benzene 17. Mori-Ban Indole Synthesis – Very weakly basic: pKa of protonated indole: –2.4 18. Graebe-Ullmann Carbazole Synthesis – Protonation occurs at C–3 preferentially 19. Madelung Indole Synthesis – Easily oxidized (atmospheric oxygen) – very electron rich 20. Nenitzescu Indole Synthesis – Less prone to oxidation of EWG's on the ring – less electron rich 21. Piloty Pyrrole Synthesis – Electrophilic attack occurs at C–3 (site of most electron density) 13 22.
    [Show full text]
  • Theoretical Study on the Acidities of Pyrrole, Indole, Carbazole and Their Hydrocarbon Analogues in DMSO
    Canadian Journal of Chemistry Theoretical study on the acidities of pyrrole, indole, carbazole and their hydrocarbon analogues in DMSO Journal: Canadian Journal of Chemistry Manuscript ID cjc-2018-0032.R1 Manuscript Type: Article Date Submitted by the Author: 13-May-2018 Complete List of Authors: Ariche, Berkane; Modelisation and computational Méthods Laboratory, Faculty of Sciences, University of Saida, Chemistry RAHMOUNI,Draft Ali; Universite Dr Tahar Moulay de Saida, Chimie Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue?: Keyword: pKa calculation, Aromaticity index, Pyrolle, DMSO, DFT https://mc06.manuscriptcentral.com/cjc-pubs Page 1 of 33 Canadian Journal of Chemistry Theoretical study on the acidities of pyrrole, indole, carbazole and their hydrocarbon analogues in DMSO Ariche Berkane, Rahmouni Ali* Modeling and Calculation Methods Laboratory, University of Saida, B.P. 138, 20002 Saida, Algeria *Corresponding author [email protected] Abstract SMD and IEF-PCM continuum solvation models have been used, in combination with three quantum chemistry methods (B3LYP,Draft M062X and CBS-QB3) to study the acidities of pyrrole, indole and carbazole as well as their hydrocarbon analogues in DMSO, following a direct thermodynamic method. Theoretical parameters such as aromaticity indices (HOMA and SA), molecular electrostatic potential (MEP) and atomic charges have been calculated using B3LYP/6-311++G(d,p) level of theory. Calculated pKa values indicate that there is generally good agreement with experimental data, with all deviations being less than the acceptable error for a directly calculated pKa values. The M062X functional combined to SMD solvation model provide the more accurate pKa values.
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]
  • Combined Experimental and Theoretical Study of Poly(Aniline-Co-Pyrrole) Oligomer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Research Exeter Combined Experimental and Theoretical Study of Poly(Aniline-co-Pyrrole) Oligomer Habib Ullah*,a,b, Muhammad Kamranb, Salma Bibic, Anwar-ul-Haq A. Shah*,b, Asif A. Tahira, Khurshid Ayub*,d aEnvironment and Sustainability Institute (ESI), University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK bInstitute of Chemical Sciences, University of Peshawar, 25120 Peshawar, Pakistan cNational Centre of Excellence in Physical Chemistry, University of Peshawar, 25120 Peshawar, Pakistan. dDepartment of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, 22060 Abbottabad, Pakistan * To whom corresponding should be addressed Email: [email protected] Abstract Quantum mechanical calculations are performed to establish the structure of an oligomer of aniline and pyrrole [Poly(Ani-co-Py)], through comparison of experimental and theoretically calculated properties, including conductivity. The copolymer was synthesized through chemical oxidative polymerization and then confirmed from the experimental IR, UV-vis, mass spectra, elemental, XRD, TGA, and SEM analysis. Quantum mechanical calculations are performed at Density Functional Theory (DFT) and Time dependent DFT (TD-DFT) methods for the electronic and spectroscopic properties of the oligomer. A very nice correlation is found between the theory and experiment which consequences the structure of Poly(Ani-co-Py). Poly(Ani-co-Py) is not explored like other conducting polymers; however, by tuning this molecular structure, the electro-active nature of this material can be enhanced adequately. KEYWORDS: DFT, Poly(Ani-co-Py), PPy, PANI, Band gap, IR, UV-vis, IP, EA, HOMO-LUMO 2 1.
    [Show full text]