University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 A Metamaterial Path Towards Optical Integrated Nanocircuits Fereshteh Abbasi Mahmoudabadi University of Pennsylvania,
[email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Electrical and Electronics Commons, Electromagnetics and Photonics Commons, and the Optics Commons Recommended Citation Abbasi Mahmoudabadi, Fereshteh, "A Metamaterial Path Towards Optical Integrated Nanocircuits" (2015). Publicly Accessible Penn Dissertations. 1570. https://repository.upenn.edu/edissertations/1570 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1570 For more information, please contact
[email protected]. A Metamaterial Path Towards Optical Integrated Nanocircuits Abstract Metamaterials are known to demonstrate exotic electromagnetic and optical properties. The extra control over manipulation of waves and fields afforded by metamaterials can be exploited towards exploring various platforms, e.g., optical integrated circuits. Nanophotonic integrated circuits have been the topic of past and ongoing research in multiple fields including, but not limited o,t electrical engineering, optics and materials science. In the present work, we theoretically study and analyze metamaterial properties that can be potentially utilized in the future design of optical integrated circuits. On this path, we seek inspiration from electronics to tackle multiple issues in developing such layered nanocircuitry. We identify modularity, directionality/isolation and tunability as three useful features of electronics and we theoretically explore mimicking them in nanoscale optics. Using epsilon-near-zero (ENZ) and mu-near- zero (MNZ) properties we propose concepts to transplant some aspects of modular design of electronic passive circuits and filters into nanophotonics. We also exploit ENZ materials to develop “transformer- like” functionality in optical nanocircuits.