Lecture Notes in Solid State 3

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes in Solid State 3 Lecture notes in Solid State 3 Eytan Grosfeld Physics Department, Ben-Gurion University of the Negev Classical free electron model for metals: The Drude model Recommended reading: • Chapter 1, Ashcroft & Mermin. The conductivity of metals is described very well by the classical Drude formula, ne2τ σ = (1.1) D m where m is the electronic mass (as decided by the band-structure) and e is the electronic charge. The conductivity is directly proportional to the electronic density n; and, to τ, the mean free time between collisions of the conducting electrons with defects that are generically present in the system: • Static defects that scatter the electron elastically, including: static impu- rities and structural defects. One can dene the elastic mean free time τe. • Dynamical defects which scatter the electron inelastically (as they can carry o energy) including: photons, other electrons, other excitations (such as plasmons). One can accordingly dene the inelastic mean free time τ'. The eciency of the latter processes depends on the temperature T : we expect it to increase as T is increased. At very low temperatures the dominant scattering is elastic, and then τ does not depend strongly on temperature but instead it depends on the amount of disorder (realized as random static impurities). We expect τ to decrease as the temperature or the amount of disorder in the system are increased. The Drude model 1897 - discovery of the electron (J. J. Thomson). 1900 - only three years later, Drude applied the kinetic theory of gases to a metal - considering it to be a gas of electrons. Assumptions: 1. Electrons are classical objects: solid spheres of identical shape. 2. There is a compensating positive charge attached to immobile particles, to ensure overall charge neutrality: 1 2 (a) Each isolated atom of the metallic element has a nucleus of charge −19 eZa (0 < e = 1:60 × 10 C, Za is the atomic number). (b) Surrounding the nucleus are Za electrons of total charge −eZa, com- posed of Z weakly bound valence electrons, and Za −Z tightly bound electrons, the core electrons. In a metal, the core electrons remain bound to the nucleus and form the (immobile, positively charged) metallic ion, while the (mobile, negatively charged) valence electrons are allowed to wander far away from the parent atom. In this context they are called the conduction electrons. 3. Electrons are almost free (no forces act between electrons), except elec- trons can collide with ions (more generally, and more correctly, we need only assume that there is some scattering mechanism, as modern theories show that static ions on a perfectly ordered lattice do not lead to scatter- ing. We will see that later when we discuss Bloch theorem). Between colli- sions they move as dictated by Newton's laws of motion. Electron-electron interactions are neglected between collisions (independent electron approximation). Electron-ion interactions are neglected as well (free electron approximation). Many of the properties of metals can be described using the classical Drude theory, including • Conductivity, • Conductivity at nite magnetic eld and Hall conductivity, • Thermal conductivity (and the historic explanation of the Wiedemann- Franz law which agrees with experimental results: only about a factor of 2 too small compared to them), • Thermoelectric eects (Seebeck eect), • AC conductivity, • Interaction with the electromagnetic eld (reection below the plasma frequency, transmission above the plasma frequency, plasma oscillations at the plasma frequency). While many of the results turn out to be inaccurate and the mechanism for scattering remains unexplained, the basic assumption of a free electrons gas that undergoes scattering remains essentially the same in modern theories. The modied Newton-like equation describing the average momentum for an electron can be derived in the following way. An electron experiences a collision with a probability per unit time of 1/τ, where τ is known as the relaxation time or the mean free time. So the probability for a collision in a time interval dt is dt/τ, and this is also the fraction of electrons that collided during that time. For a macroscopic number of electrons that have collided, the average momentum immediately following the collision is zero. The average momentum for the electrons at time t + dt is therefore dt dt p(t + dt) = [0 + F(t)dt] + 1 − [p(t) + F(t)dt] ;(1.2) τ τ | {z } | {z } electrons that collided electrons that did not collide 3 where p(t) is the momentum per electron, F(t) is the external force per electron. Therefore, p(t) p(t + dt) − p(t) = F(t)dt − dt + O(dt)2; (1.3) τ and we get the central equation of motion for the Drude model dp p(t) = − + F(t): (1.4) dt τ Hence the eect of individual electron collisions is to introduce a frictional damp- ing term to the equation of motion. In more technical terms, following a collision, we will use the Boltzmann distribution to generate a velocity for the electrons m 3=2 mv2 f(v) = exp − (1.5) 2πkBT 2kBT so the electrons have an averge speed which is controlled by the (local) temper- ature, but the average velocity is zero due to the angular averaging. Conductivity Ohm's law: the current I owing in a wire is proportional to the potential drop V along the wire V = IR; (1.6) where R is the resistance (measured in Ohms) which depends on the shape of the wire. One can dene the resistivity ρ according to E = ρj; (1.7) where E is the electric eld and j is the current density. The quantities are related in the following way. For a current owing in a wire of length L and cross-sectional area A the current density along the wire is j = I=A. Since V = EL, we get V = (ρI=A) L hence R = ρL/A: (1.8) All the dependence of R on the dimensions of the wire is now explicit, hence ρ is a material property. The inverse resistivity is the conductivity σ = ρ−1. The inverse resistance is the conductance G (measured in 1/Ohms). In the framework of the Drude model, we can solve explicitly the dierential equation with F = −eE, to get −t/τ p(t) = −eτE + (p0 + eτE)e (1.9) when t ! 1 we reach steady state, for which we get a drift velocity eEτ v = − ; (1.10) m and a corresponding current density is ne2τ ne2τ j = −nev = E; σ = ; (1.11) m D m justifying Eq. (1.1). 4 Thermal conductivity The Drude model was able to give an explanation to the empirical law of Wiede- mann and Franz (1853), that the ratio of the thermal to electrical conductivity is directly proportional to the temperature, with a proportionality constant which is more or less the same for all metals. Hence, one denes the ratio κ/σT , known as the Lorenz number. To estimate the thermal conducitivity of electrons one considers a metal bar along which the temperature varies slowly. Fourier's law states that jq = −κrT (1.12) where jq is the thermal current density (its magnitude is the thermal energy per unit time crossing a unit area perpendicular to the ow). Electrons arriving at point r with velocity v have on average underwent a collision at r − vτ and will carry thermal energy E[T (r − vτ)], hence 1 j = − nv fE[T (x − vτ)] − E[T (x + vτ)]g (1.13) q 2 @E ' −τvn v · (rT ) (1.14) @T Averaging, we get 1 hvvi = hv2iI (1.15) 3 and dening dE 3 c = n = nk (1.16) V dT 2 B we arrive at the result 1 κ = c τhv2i (1.17) 3 V The Lorenz number is κ 1 c hmv2i L = = V (1.18) σT 3 ne2T 2 with hmv i = 3kBT one gets 3 k 2 L = B = 1:11 × 10−8 (J/CK)2 (1.19) 2 e Quantum free electron model for metals: The Sommerfeld model Recommended reading: • Chapter 2, Aschroft & Mermin. A quantum model: a free electron gas. At thermal equilibrium, the number of electrons having energy E is given by the Fermi distribution 1 f(E) = ; (1.20) eβ(E−µ) + 1 in which β = 1=(kBT ) is the inverse temperature (kB is the Boltzmann constant) and µ is the chemical potential. At zero temperature (β ! 1) the chemical 5 potential is equal to the Fermi energy, EF , and the Fermi function describes a step-function, such that all states with energy E ≤ EF are full and all states with energy about EF are empty. In the grand-canonical ensemble, where the chemical potential is xed, the number of electrons is temperature-dependent. The electronic density (number of electrons per unit volume) is given by 1 n = dEN (E)f(E); (1.21) ˆ−∞ where N (E) is the density of states (number of states having energy E per unit volume). We can straightforwardly adopt the results of the Drude model for this case, however, we need to correct the following points: • The typical velocity squared for the electrons, hv2i, is set by the Fermi energy and not by the temperature mv2 = E ; (1.22) 2 F D 2 E (compare with mv 3 for the Boltzmann distribution). 2 = 2 kBT • The electronic heat capacity is proportional to the temperature and is not a constant. The reason is that at nite temperature T there are ∼ Ω(EF )kBT electrons which become excited (here Ω(EF ) ∼ n=EF is the density of states at the Fermi energy), and they each typically carry additional energy kBT , leading to an increase in energy of about E ∼ 2 compared to the ground state; Hence dE .
Recommended publications
  • Chapter 5 Optical Properties of Materials
    Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water
    [Show full text]
  • Einstein and the Early Theory of Superconductivity, 1919–1922
    Einstein and the Early Theory of Superconductivity, 1919–1922 Tilman Sauer Einstein Papers Project California Institute of Technology 20-7 Pasadena, CA 91125, USA [email protected] Abstract Einstein’s early thoughts about superconductivity are discussed as a case study of how theoretical physics reacts to experimental find- ings that are incompatible with established theoretical notions. One such notion that is discussed is the model of electric conductivity implied by Drude’s electron theory of metals, and the derivation of the Wiedemann-Franz law within this framework. After summarizing the experimental knowledge on superconductivity around 1920, the topic is then discussed both on a phenomenological level in terms of implications of Maxwell’s equations for the case of infinite conduc- tivity, and on a microscopic level in terms of suggested models for superconductive charge transport. Analyzing Einstein’s manuscripts and correspondence as well as his own 1922 paper on the subject, it is shown that Einstein had a sustained interest in superconductivity and was well informed about the phenomenon. It is argued that his appointment as special professor in Leiden in 1920 was motivated to a considerable extent by his perception as a leading theoretician of quantum theory and condensed matter physics and the hope that he would contribute to the theoretical direction of the experiments done at Kamerlingh Onnes’ cryogenic laboratory. Einstein tried to live up to these expectations by proposing at least three experiments on the arXiv:physics/0612159v1 [physics.hist-ph] 15 Dec 2006 phenomenon, one of which was carried out twice in Leiden. Com- pared to other theoretical proposals at the time, the prominent role of quantum concepts was characteristic of Einstein’s understanding of the phenomenon.
    [Show full text]
  • Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature
    Materials 2013, 6, 4879-4910; doi:10.3390/ma6114879 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature Alessandro Alabastri 1,*, Salvatore Tuccio 1, Andrea Giugni 1, Andrea Toma 1, Carlo Liberale 1, Gobind Das 1, Francesco De Angelis 1, Enzo Di Fabrizio 2,3 and Remo Proietti Zaccaria 1,* 1 Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy; E-Mails: [email protected] (S.T.); [email protected] (A.G.); [email protected] (A.T.); [email protected] (C.L.); [email protected] (G.D.); [email protected] (F.A.) 2 King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering (PSE) Division, Biological and Environmental Science and Engineering (BESE) Division, Thuwal 23955-6900, Kingdom of Saudi Arabia; E-Mail: [email protected] 3 Bio-Nanotechnology and Engineering for Medicine (BIONEM), Department of Experimental and Clinical Medicine, University of Magna Graecia Viale Europa, Germaneto, Catanzaro 88100, Italy * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.A.); [email protected] (R.P.Z.); Tel.: +39-010-7178-247; Fax: +39-010-720-321. Received: 10 July 2013; in revised form: 8 October 2013 / Accepted: 10 October 2013 / Published: 25 October 2013 Abstract: In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients.
    [Show full text]
  • Chapter 5 the Drude Theory of Metals
    Chapter 5 The Drude Theory of Metals • Basic assumption of Drude model • DC electrical conductivity of a metal • Hall effect • Thermal conductivity in a metal 1 Basic assumptions of Drude model * A “ gas of conduction electrons of mass m, which move against a background of heavy immobile ions Zρ Electron density n = .0 6022 ×10 24 m A .0 6022 ×10 24 Avogadro’s number ρm Mass density in g/cm 3 A Atomic mass in g/mole Z Number of electron each atom contribute rs Radius of a sphere whose volume is equal to the volume per conduction electron V 1 4 3 3/1 = = πr 3 r = N n 3 s s 4πn r s ~ 2 − 3 in typical metal a0 Bohr radius The density is typically 10 3 times greater than those of a classical gas at normal T and P. 2 * Between collisions the interaction of a given electron, both with others and with the ions, is neglected. * Coliisons in the Drude model are instantaneous events that abruptly alter the velocity of an electron. Drude attributed them to the electrons bouncing off the impenetrable ion cores. 1 * We shall assume that an electron experiences a collision with a probability per unit time τ Probability dt during time interval dt τ τ : relaxation time * Electrons are assumed to achieve thermal equilibrium with their surroundings only through collisons 3 DC Electrical Conductivity of a Metal r n electrons per unit volume all move with velocity v . n(vdt )A electrons will cross an area A perpendicular to the direction of flow.
    [Show full text]
  • Drude-Lorentz Analysis of the Optical Properties of The
    DRUDE-LORENTZ ANALYSIS OF THE OPTICAL PROPERTIES OF THE QUASI-TWO-DIMENSIONAL DICHALCOGENIDES 2H-NbSe2 AND 2H-TaSe2 A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Dinesh Marasinghe August, 2018 DRUDE-LORENTZ ANALYSIS OF THE OPTICAL PROPERTIES OF THE QUASI-TWO-DIMENSIONAL DICHALCOGENIDES 2H-NbSe2 AND 2H-TaSe2 Dinesh Marasinghe Thesis Approved: Accepted: Advisor Dean of the College Dr. Sasa V. Dordevic Dr. Linda Subich Faculty Reader Dean of the Graduate School Dr. Ben Yu-Kuang Hu Dr. Chand Midha Faculty Reader Date Dr. Sergei F. Lyuksyutov Department Chair Dr. Chris Ziegler ii ABSTRACT The reflectivity of a material basically depends on the collisions of free electrons. Existing spectroscopic reflectance data of two dichalcogenide materials, 2H-NbSe2 and 2H-TaSe2, is studied in this work. We analyzed this information with the Drude- Lorentz model for 2D electron gases. Using the program RefFIT, we explored the materials' reflectance and the conductivity and their dependance on temperature across frequencies ranging from infrared to ultraviolet. We examined both the in- plane (ab-plane) and out-of-plane (c-axis) components. In both materials, the ab- plane had greater reflectance and conductivity, with 2H-NbSe2 having the largest of both quantities. The anisotropy-direction dependence-effects are most pronounced in 2H-TaSe2. When frequency increased, collisions of free elections increased, decreasing the reflectance and conductivity. We also determined that the reflectance and the conductivity of the materials decreased with increased temperature for the same reason. Once the plasma edge was reached, interband transition occurred, causing an increase in conduction electrons and a decrease in both reflectance and conductivity.
    [Show full text]
  • Drude Model 1 in 1897, J. J. Thomson Discovered Electrons. in 1905
    Drude Model In 1897, J. J. Thomson discovered electrons. In 1905, Einstein interpreted the photoelectric effect In 1911 - Rutherford proved that atoms are composed of a point-like positively charged, massive nucleus surrounded by a sea of electrons. - Drude constructed his theory of electrical and thermal conduction in metals by (1) considering the electrons to be a gas of negatively charged particles traversing in a medium of uniformly distributed positive ions, and (2) applying the kinetic theory of gas to the electron sea. Below is a schematic diagram of Drude’s model of metals: (In 1922, Bohr was awarded the Nobel Prize for his contribution to the understanding of the structure of atoms. In late 1925, the Schrödinger equation was formulated.) Core electrons Zc e +Ze Zc e +Ze Zc e +Ze Zc e +Ze Positively charged ions Electron sea due to the delocalized valence electrons, (Z – Zc) from each atom. There is one important parameter of the model: (1) Electron number density, n 23 n = N/V = 6.02 x 10 x (Z Zc)m/A, (1.1) Avogadro’s number where N is the total number of electrons in the metal, V is the volume, m is the mass density, and A is the mass number. Note that only the valence electrons ((Z Zc) per atom) contribute to n. (2) Average electron separation, rs. 3 V/N = 1/n = (4/3) rs 1/3 rs = [3/(4n)] (1.2) 1 Drude Model The value of n varies from 0.911022/cm3 for Cs to 24.71022/cm3 for Be among different metals.
    [Show full text]
  • A Metamaterial Path Towards Optical Integrated Nanocircuits
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 A Metamaterial Path Towards Optical Integrated Nanocircuits Fereshteh Abbasi Mahmoudabadi University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Electrical and Electronics Commons, Electromagnetics and Photonics Commons, and the Optics Commons Recommended Citation Abbasi Mahmoudabadi, Fereshteh, "A Metamaterial Path Towards Optical Integrated Nanocircuits" (2015). Publicly Accessible Penn Dissertations. 1570. https://repository.upenn.edu/edissertations/1570 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1570 For more information, please contact [email protected]. A Metamaterial Path Towards Optical Integrated Nanocircuits Abstract Metamaterials are known to demonstrate exotic electromagnetic and optical properties. The extra control over manipulation of waves and fields afforded by metamaterials can be exploited towards exploring various platforms, e.g., optical integrated circuits. Nanophotonic integrated circuits have been the topic of past and ongoing research in multiple fields including, but not limited o,t electrical engineering, optics and materials science. In the present work, we theoretically study and analyze metamaterial properties that can be potentially utilized in the future design of optical integrated circuits. On this path, we seek inspiration from electronics to tackle multiple issues in developing such layered nanocircuitry. We identify modularity, directionality/isolation and tunability as three useful features of electronics and we theoretically explore mimicking them in nanoscale optics. Using epsilon-near-zero (ENZ) and mu-near- zero (MNZ) properties we propose concepts to transplant some aspects of modular design of electronic passive circuits and filters into nanophotonics. We also exploit ENZ materials to develop “transformer- like” functionality in optical nanocircuits.
    [Show full text]
  • NOTES on the DRUDE MODEL 1. Assumptions and Basics the Drude
    NOTES ON THE DRUDE MODEL KYLE MCELROY Abstract. Here are some notes about the classical theory of metals and the Drude model. The classical theory of electrons in metals is used to describe the basics of metallic behavior. These include their electrical conductivity, heat conductivity, reflection of optical wavelengths, etc. 1. Assumptions and basics The Drude model was developed at the turn of the 20th century by Paul Drude. It came a few years after J.J. Thompson discovered the electron in 1897. It predates quantum theory, but still can tell us a lot about electrons in metals. As background the the model we should get to know the electrons and how many we are dealing with. We're going to keep the valence assumption. This assumption rests on the intuition that the core electrons will be more tightly bound to their nuclei and hence will not be free to wander around and contribute to conduction. Essentially this lowers the number of electrons from Z to Zc where Zc is the number of conduction electrons. So in a sample of metal say Sodium (Na) the density of conduction electrons, n is: (1.1) Z ½ 1e=atom ¢ 1 £ 106g=m3 n = N c m = 6:02 £ 1023atoms=mol = 2 £ 1028e=m3 A A 29g=mol where NA is Avogadro's number, ½m is the density of the metal, A is the atomic number of the element and the numbers are for Na. For the actual model we're going to eliminate all the electron ion interactions and replace them by a single parameter.
    [Show full text]
  • Drude Model for Dielectric Constant of Metals
    Drude Model for dielectric constant of metals. • Conduction Current in Metals • EM Wave Propagation in Metals • Skin Depth • Plasma Frequency Ref : Prof. Robert P. Lucht, Purdue University Drude model z Drude model : Lorenz model (Harmonic oscillator model) without restoration force (that is, free electrons which are not bound to a particular nucleus) Linear Dielectric Response of Matter ConductionConduction CurrentCurrent inin MetalsMetals The equation of motion of a free electron (not bound to a particular nucleus; C = 0), rr r dr2 r m druurruu dv r mCreEmmveE=− −e − ⇒ +γ =− eeedt 2 τ dt dt 1 (τ =≈ : relaxation time 10−14 s) Lorentz model γ (Harmonic oscillator model) If C = 0, it is called Drude model The current density is defined : r ⎡⎤C J=− N evr with units of ⎣⎦⎢⎥sm− 2 Substituting in the equation of motion we obtain : r dJrr⎛⎞ N e2 +=γ JE⎜⎟ dt⎝⎠ me ConductionConduction CurrentCurrent inin MetalsMetals Assume that the applied electric field and the conduction current density are given by : rr rr Local approximation E=− Eexp() itωω J =− J exp () it 00to the current-field relation Substituting into the equation of motion we obtain : r dJ⎡⎤exp − iω t ⎣⎦0 () rrr +−=−−+−γωωωγωJitiJitJitexp() exp () exp () dt 000 ⎛⎞Ne2 r =−⎜⎟Eit0 exp()ω ⎝⎠me Multiplying through byexp()+ iω t : rr⎛⎞Ne2 ()−+iJωγ 00 =⎜⎟ E ⎝⎠me rr⎛⎞Ne2 or equivalently()−+ iωγ J =⎜⎟ E ⎝⎠me ConductionConduction CurrentCurrent inin MetalsMetals For static fields()ω = 0: we obtain rrr⎛⎞Ne22 Ne J==⇒==⎜⎟ Eσσ E static conductivity ⎝⎠mmeeγγ For the general case of an oscillating applied field : rrr⎡⎤σ J==⎢⎥ Eσσωω E = dynamic conductivity ⎣⎦1/− ()iωγ For very low frequencies,1,()ωγ << the dynamicconductivity is purely real and the electrons follow the electric field.
    [Show full text]
  • Condensed Matter Physics I: 2015-2016 Introduction, Drude Model
    Condensed matter physics I: 2015-2016 Introduction, Drude model R. Ganesh 1 Introduction Condensed matter physics (CMP) is the study of systems with many interact- ing particles. The adjective `condensed' should be understood as the opposite of `dilute' { the constituent particles are so close to each other that their interac- tions cannot be ignored. Some typical examples of `condensed' systems include electrons in a metal, spins in an insulating magnet, neutrons in a neutron star, Na atoms in an ultracold atomic gas, He atoms in liquid He, etc. Historically, the field grew out solid state physics. It used to be called 'solid state physics' until 1967 when Phil Anderson and Volker Heine coined the term `condensed matter physics'. CMP serves as a counterpoint to the `reductionism'. In the reductionist ap- proach, complex systems are studied by breaking them down into smaller, funda- mental units. This is exemplified by particle accelerator physics in which atoms are broken down into nucleons, which are further broken down into quarks, etc. In the condensed matter point of view, the whole is greater than the sum of its parts. For example, we may understand how a single He atom behaves according to the laws of quantum mechanics. However, that does not tell us how a beaker with liquid He will behave. Completely unforeseen behaviour (superfluidity in this case) can emerge from the interactions of many constituent particles. The new physics that emerges from collective behaviour at different length scales is the domain of condensed matter physics. There are two broad (not necessarily mutually exclusive) divisions within CMP.
    [Show full text]
  • 1 the Electronic Structure of Solids Uwe Bovensiepen, Silke Biermann, and Luca Perfetti
    j1 1 The Electronic Structure of Solids Uwe Bovensiepen, Silke Biermann, and Luca Perfetti The discussion of dynamics at interfaces is based on the motion of ion cores and electronic excitations that are mostly optically driven. Hence, the electronic structure is of fundamental importance here. In solids such as molecular or ionic crystals, the valence electron distribution is not considerably distorted from the respective isolated atoms, ions, or molecules. Hence, their cohesion is entirely given by the classical potential energy of negligibly deformed electron distributions of bare particles, and van der Waals or Coulomb interactions are responsible for the formation of solid materials. This ceases to be so in metals and covalent crystals because the valence electron distribution plays the decisive role in bonding the constituents to a solid. In turn, the valence electron distribution can be considerably modified from the isolated atom or ion. A general description of solids must, therefore, consider the electronic structure in the first place. Fur- thermore, the dynamical processes discussed in this book are mostly optically excited or electron mediated. This chapter introduces the basic concepts widely used in the description of the electronic structure in solid materials. In Section 1.1, we present the description of the nearly free electron approximation that is motivated by optical excitations of a solid following the Drude model. We introduce the Fermi sphere and the dispersion of electronic bands in momentum space. In Section 1.2, the influence of the periodic potential in a crystal is considered, which leads to the description of the electronic band structure by Blochs theory for delocalized states.
    [Show full text]
  • Section 8: Electronic Transport Drude Model the Simplest Treatment of the Electrical Conductivity Was Given by Drude
    Physics 927 E.Y.Tsymbal Section 8: Electronic Transport Drude model The simplest treatment of the electrical conductivity was given by Drude. There are four major assumptions within the Drude model. 1. Electrons are treated as classical particles within a free-electron approximation. Thus, in the absence of external electromagnetic fields each electron is taken to move uniformly in a straight line, neglecting the interactions with other electrons and ions. In the presence of external fields each electron is taken to move according to Newton's laws of motion. 2. Electrons move free only between collisions with scattering centers. Collisions, as in kinetic theory, are instantaneous events that abruptly alter the velocity of an electron. Drude attributed them to the electrons scattering by ion cores. However, as we will see later, this is not a correct picture of electron scattering on ordered periodic structures. A particular type of scattering centers does not matter in the Drude model. An understanding of metallic conduction can be achieved by simply assuming that there is some scattering mechanism, without inquiring too closely into just what that mechanism might be. Fig.1 Trajectory of a conduction electron scattering off the ions, according to the picture of Drude. 3. An electron experiences a collision, resulting in an abrupt change in its velocity, with a probability per unit time 1/τ. This implies that the probability of an electron undergoing a collision in any infinitesimal time interval of length dt is just dt/τ. The time τ is therefore an average time between the two consecutive scattering events.
    [Show full text]