Chapter 1: Introduction to Medical Microbiology

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1: Introduction to Medical Microbiology Chapter 1: Introduction to Medical Microbiology Medical microbiology is the study of parasites, fungi, bacteria, and viruses that are the agents of infectious disease in humans. Modern medicine relies on the control of microorganisms to maintain human health and quality of life. The divisions of medical microbiology include bacteriology, the study of bacteria that inhabit and/or colonize the human body and cause disease; mycology, the study of fungi as causative agents of human disease; parasitology, the formal study of the human parasitic organisms (protozoans, helminths, nematodes, trematodes and arthropods); and virology, the study of viruses that cause infectious syndromes in humans. Sizes for the pathogens considered include the smallest, viruses (50-100nm), bacteria that range from 0.1 µm (Chlamydiae) to 10µm (Bacillus rods), fungi ranging from ~8µm (yeasts) up to 10mm in size (filamentous fungi) and metazoan parasites that are visible to the naked eye. Medical microbiology as a discipline requires a working knowledge of human anatomy and histology, and a comprehension of the pathologies associated with the infectious disease process. The human immune response to pathogens is key to the consideration of infectious disease. Understanding the relationship between pathogens and antimicrobial pharmacology is essential as well. Microbiology places information about pathogenic organisms and their specific characteristics within the context of host disease. Developing connections between microbiology and immunology will make learning more effective in both disciplines. Special patient populations are important to consider and should be appreciated for the distinctive infectious disease presentations they reflect. Age-related immuno-compromised status makes the elderly and the very young, especially newborn infants, particularly at-risk for respiratory infections. Health-related immunosuppression can predispose organ transplant recipients, and patients with immunodeficiency disorders, cancer, and diabetes to difficult infections. And, unique exposures due to occupation or travel can be a problem for some patient populations. An immunocompromised person is lacking in some aspect of innate or adaptive immunity due to either a primary or secondary immune deficiency. Whatever the route, the net result is that the immunocompromised individual becomes susceptible to infection with a range of opportunistic pathogens from the commensal microflora and conventional infectious agents that cause a more severe form of disease than in a 'normal' host. This depends on how the patient's condition affects each limb of the immune system, which in turn controls the most likely pathogens. Immunity to infection and sensitivity to normal commensal microbes as pathogens varies throughout life and not just in 'disease' states. Host-Parasite Relationships A parasite is an organism that makes its living at the expense of another organism, so in a broad sense, all human pathogens fall under the blanket term “parasite”. A parasite derives its nutrients and ecosystem from the host and is able to grow and reproduce in this environment. Medical microbiology presents concepts relating host-parasite relationships and the human immune system’s response to infectious disease. Microbial ecology and system imbalance are keys to the understanding of many common diseases. The development of an infection and its eradication frequently involves issues that are defined as much by the host as by the microbial parasite, a balance between host immunity and the virulence of the infectious agent. NORMAL FLORA The normal microbial flora of the human body is located mainly in the superficial layers and gastrointestinal tract. Gastrointestinal pathogens have some resistance to gastric acid and bile and agents of skin infections are resistant to drying. Lower respiratory and upper urogenital tracts are sterile normally, but they are susceptible to microbial “invasion” from adjacent sites. Contamination occurs when microbes come into contact with host surfaces. Colonization. The skin of a newborn infant is populated initially by the organisms carried in the urogenital tract of the mother and acquired by the baby at birth. The mother’s skin and breath are additional sources of normal bacteria that become the infant’s commensal population, especially the mucosal normal flora. The Oral Cavity. Many of the “normal” flora can be disease-causing organisms under the right conditions. Viridans streptococci are largely responsible for dental caries and pitting of tooth enamel by Streptococcus mutans acidic metabolic by-products is well documented. Beneficial Effects. Vitamin synthesis and bile pigment degradation are two beneficial effects provided by bacteria to the host (Bacteroides species make vitamin K and degrade intestinal bile). Resident microflora inhibit the of growth of potential pathogens, as well as providing mechanical advantages such as suppression of competitor’s adherence, antigen priming of the immune system, maintenance of low redox potential, and bacteriocin secretion (inhibits the growth of bacterial competitors). NUMBER OF MICROORGANISMS IN COLLECTED SAMPLES Nasal Washings 106 microbes/ml fluid Saliva 108 microbes/ml Tooth Surfaces 108 microbes/ml Gingival crevices 1011-1012 microbes/ml PROKARYOTIC cells outnumber EUKARYOTIC cells in the human body, by a factor of 10 to 1! DISEASE PROGRESSION The period of total infection is from point of first contact until point of complete elimination of the pathogen. Overt disease is associated with the onset of symptoms. In a recurrent infection, the disease reappears over time with a characteristic rise and fall of agent shedding and symptomatic disease. The seropositive phase occurs where the patient has been exposed to a pathogen and has mounted an antibody response that is reflected in detectable levels of specific serum immunoglobulin. Incubation is defined as the period from the point of first contact until the point of appearance of symptoms of infection (when “disease is present”). Latent infections remain dormant, and then re-emerge after stress or a lapse in immune function. During the period of communicability the infectious agent is being continuously shed by the patient. To complete the cycle of infection, infectious agents are excreted, and the route of excretion dictates the mechanism of spread. Fecal-oral spread involves excretion within stool samples and may be aided by diarrhea. Pathogens are often aerosolized in respiratory secretions by sneezing and coughing. STD agents are transmitted by sexual contact with vaginal, cervical or urethral fluids. Zoonotic infections are diverse and cause diseases where humans are either a part of the normal infectious cycle or accidental hosts by contact with vectors or reservoir animals. Some of these agents are excreted in feces and urine, but also through parasitemia (widespread presence of the parasite). Examples include bloodstream parasitemia, to ensure uptake by blood-sucking insects (e.g. Anopheles mosquitos and malaria) and rabies virus budding from salivary gland cells to aid viral spread through animal bites. Pathogen Virulence Mechanisms. Host-parasite interactions can be described as pathogenic vs nonpathogenic (pathogenicity=ability to cause disease or multiply within a host), or invasive as opposed to a successful commensal avirulent status quo (the human as an ecological niche). Virulence is a concept of “degree of pathogenicity”. Some viruses and other pathogenic microbes characteristically cause disease and these may express highly specific adhesins or toxins. Virulent organisms cause a specific host injury that is removed when the gene encoding a specific toxin or trait is deleted. The genes controlling the synthesis of these factors are grouped together under the control of a single promoter in pathogenicity islands. Examples of virulence factors include the neurotoxin secreted by Clostridium tetani (tetanospasmin) and the capsule of Streptococcus pneumoniae that subverts phagocytosis by preventing ingestion. Toxin production is a common virulence factor and bacterial exotoxins can inhibit host cell protein synthesis, stimulate watery secretions, and cause violent symptoms of disease in the host. Attachment and adherence via specific epithelial and mucosal receptors (integrins) is another form of virulence because adhesion protects pathogens from the flushing of mucosal surfaces. Vibrio cholera binds to sites on the villi of the jejunum or ileum. Virulence is mediated by strength of attachment phenomena. Specifically pathogenic strains of Escherichia coli have capsular antigens (K1) that make the bacteria neurotrophic; most strains of E. coli are harmless commensal organisms that occupy space in the human gastrointestinal system. Inhibition of host immune mediators. Inhibiting host immune cell products to blunt the anti-microbial response is a strategy of many pathogens. Some organisms produce leukocidins that kill neutrophils and macrophages. Others have intracellular growth patterns that allow them to avoid detection by the host’s immune system (these will be discussed with the pathogen groups). Streptococcus pyogenes and Pseudomonas aeruginosa degrade human C5a using a peptidase enzyme. IgA protease is an immunoglobulin-destroying enzyme produced by Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Complement compoenent C3b binding is inhibited by HSV envelope glycoprotein and vaccinia virus accelerates the decay of complement
Recommended publications
  • Medical Directors Arup Medical Directors and Consulting Faculty | 2015
    MEDICAL DIRECTORS ARUP MEDICAL DIRECTORS AND CONSULTING FACULTY | 2015 MAY 2015 www.aruplab.com Information in this brochure is current as of May 2015. All content is subject to change. Please contact ARUP Client Services at (800) 522-2787 with any questions or concerns. ARUP LABORATORIES ARUP Laboratories is a national clinical and anatomic pathology reference laboratory and a nonprofit enterprise of the University of Utah and its Department of Pathology. Located in Salt Lake City, Utah, ARUP offers in excess of 3,000 tests and test combinations, ranging from routine screening tests to esoteric molecular and genetic assays. Rather than competing with its clients for physician office business, ARUP chooses instead to support clients’ existing test menus by offering complex and unique tests, with accompanying consultative support, to enhance their abilities to provide local and regional laboratory services. ARUP’s clients include many of the nation’s university teaching hospitals and children’s hospitals, as well as multihospital groups, major commercial laboratories, group purchasing organizations, military and other government facilities, and major clinics. In addition, ARUP is a worldwide leader in innovative laboratory research and development, led by the efforts of the ARUP Institute for Clinical and Experimental Pathology®. Since its formation in 1984 by the Department of Pathology at the University of Utah, ARUP has founded its reputation on reliable and consistent laboratory testing and service. This simple strategy contributes significantly to client satisfaction. When ARUP conducts surveys, clients regularly rate ARUP highly and respond that they would recommend ARUP to others. As the most responsive source of quality information and knowledge, ARUP strives to be the reference laboratory of choice for community healthcare systems.
    [Show full text]
  • Job Posting Clinical Microbiology Final
    The Department of Pathology & Cell Biology at Columbia University Irving Medical Center (CUIMC) is recruiting for an MD, MD/PhD, or PhD academic clinical microbiologist of any rank to join our faculty as a Medical Director of the NewYork-Presbyterian/CUIMC Clinical Microbiology Laboratory. Applicants should have an established track record of accomplishment within the field of clinical microbiology and a demonstrated ability to lead an experienced group of laboratory technologists, supervisors, and staff. In addition to strong clinical and technical skills, particular emphasis is placed on candidates with a demonstrated record of collegiality and inter-departmental collaboration. Applicants must have completed a fellowship in clinical microbiology and be board-certified/board-eligible in Medical and Public Health Microbiology through the American Board of Medical Microbiology (ABMM) or board-certified/board- eligible in Clinical Pathology with subspecialty certification in Medical Microbiology through the American Board of Pathology (ABP). The applicant must also be able to satify clinical licensing requirements to serve as a Laboratory Director in New York State. The successful applicant will help oversee diagnostic testing in the areas of Bacteriology, Virology, Mycobacteriology, Mycology, and Parasitology. The position also includes responsibilities for teaching of pathology residents, medical students, infectious diseases fellows, and technical staff. Applicants must be currently involved in ongoing research with a track record of publications in the field. The position offers a competitive salary commensurate with training and experience, and an appointment to the faculty of the Columbia University Vagelos College of Physicians & Surgeons. The Clinical Microbiology Laboratory at NewYork-Presbyterian/CUIMC is located in the Washington Heights neighborhood of New York City, offering unparalleled opportunities to work and live in a thriving, diverse, metropolitan environment with access to world-class cultural institutions, restaurants, and entertainment.
    [Show full text]
  • Communicable Disease Chart
    COMMON INFECTIOUS ILLNESSES From birth to age 18 Disease, illness or organism Incubation period How is it spread? When is a child most contagious? When can a child return to the Report to county How to prevent spreading infection (management of conditions)*** (How long after childcare center or school? health department* contact does illness develop?) To prevent the spread of organisms associated with common infections, practice frequent hand hygiene, cover mouth and nose when coughing and sneezing, and stay up to date with immunizations. Bronchiolitis, bronchitis, Variable Contact with droplets from nose, eyes or Variable, often from the day before No restriction unless child has fever, NO common cold, croup, mouth of infected person; some viruses can symptoms begin to 5 days after onset or is too uncomfortable, fatigued ear infection, pneumonia, live on surfaces (toys, tissues, doorknobs) or ill to participate in activities sinus infection and most for several hours (center unable to accommodate sore throats (respiratory diseases child’s increased need for comfort caused by many different viruses and rest) and occasionally bacteria) Cold sore 2 days to 2 weeks Direct contact with infected lesions or oral While lesions are present When active lesions are no longer NO Avoid kissing and sharing drinks or utensils. (Herpes simplex virus) secretions (drooling, kissing, thumb sucking) present in children who do not have control of oral secretions (drooling); no exclusions for other children Conjunctivitis Variable, usually 24 to Highly contagious;
    [Show full text]
  • Role of the Microbiology Laboratory in Infection Control
    GUIDE TO INFECTION CONTROL IN THE HOSPITAL CHAPTER 3: Role of the Microbiology Laboratory in Infection Control Author Mohamed Benbachir, PhD Chapter Editor Gonzalo Bearman MD, MPH, FACP, FSHEA, FIDSA Topic Outline Key Issues Known Facts Suggested Practice Suggested Practice in Under-Resourced Settings Summary References Chapter last updated: January, 2018 KEY ISSUES The microbiology laboratory plays an important role in the surveillance, treatment, control and prevention oF nosocomial inFections. The microbiologist is a permanent and active member oF the infection control committee (ICC) and the antimicrobial stewardship group (ASG). Since most of the inFection control and antimicrobial stewardship programs rely on microbiological results, quality assurance is an important issue. KNOWN FACTS The microbiologist is a daily privileged interlocutor oF the infection control team (inFection control doctor and inFection control nurse) and the antimicrobial stewardship working group. The First task oF the microbiology laboratory is to accurately, consistently and rapidly identiFy the responsible agents to species level and identify their antimicrobial resistance patterns. Traditional microbiologic methods remain suboptimal in providing rapid identification and susceptibility testing. There is a growing need for more rapid and reliable laboratory results. Important progress made in the fields of instruments, reagents and techniques have made it easier to adapt to the important changes oF the clinical microbiology context e.g. increasing use of microbiology tests, shortage of qualiFied personnel. There is also a growing demand For quality in clinical laboratories and more and more countries are elaborating national regulations. 1 The microbiology processes are becoming increasingly more complex. InFormatics are playing an increasing role in the improvement oF these processes in terms oF workFlow, timeliness and cost.
    [Show full text]
  • DUKE UNIVERSITY School of Medicine Pathologists' Assistant
    DUKE UNIVERSITY School of Medicine Pathologists’ Assistant Program Department of Pathology Academic Programs The Department of Pathology at Duke University offers a wide array of training programs to fit individual requirements and goals. The Residency Training program is an ACGME approved program and is available as an Anatomic Pathology/Clinical Pathology combined program, a shorter Anatomic Pathology only program, or an Anatomic Pathology/Neuropathology program. Subspecialty fellowships in Cytopathology, Dermatopathology, Hematopathology, Medical Microbiology, and Neuropathology are also ACGME approved. These programs provide the highest quality of graduate medical education by drawing on the depth and breadth of faculty expertise in the Department in all aspects of anatomic and clinical pathology and the availability of a wide variety of often complex clinical cases seen at Duke University Health System. For medical students interested in a career in Pathology pre-doctoral fellowships, internships and externships are available. Research Training in Experimental pathology can be obtained through Pre- and postdoctoral fellowships of one to five years. All pre-doctoral fellows are candidates for the Ph.D. degree in pathology. The Ph.D. is optional in postdoctoral programs, which provide didactic and research training in various aspects of modern experimental pathology. A two year NAACLS accredited Pathologists’ Assistant Program leads to a Master of Health Science degree, certifies graduates to sit for the ASCP Board of Certification examination, and leads to exciting career opportunities in a variety of anatomic pathology laboratory settings. Pathologists’ assistants are analogous to physician assistants, but with highly specialized training in autopsy and surgical pathology. This profession was pioneered in the Duke Department of Pathology 50 years ago, and is one of only twelve such programs in existence today.
    [Show full text]
  • 797 Circulating Tumor DNA and Circulating Tumor Cells for Cancer
    Medical Policy Circulating Tumor DNA and Circulating Tumor Cells for Cancer Management (Liquid Biopsy) Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History • Endnotes Policy Number: 797 BCBSA Reference Number: 2.04.141 Related Policies Biomarkers for the Diagnosis and Cancer Risk Assessment of Prostate Cancer, #336 Policy1 Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Plasma-based comprehensive somatic genomic profiling testing (CGP) using Guardant360® for patients with Stage IIIB/IV non-small cell lung cancer (NSCLC) is considered MEDICALLY NECESSARY when the following criteria have been met: Diagnosis: • When tissue-based CGP is infeasible (i.e., quantity not sufficient for tissue-based CGP or invasive biopsy is medically contraindicated), AND • When prior results for ALL of the following tests are not available: o EGFR single nucleotide variants (SNVs) and insertions and deletions (indels) o ALK and ROS1 rearrangements o PDL1 expression. Progression: • Patients progressing on or after chemotherapy or immunotherapy who have never been tested for EGFR SNVs and indels, and ALK and ROS1 rearrangements, and for whom tissue-based CGP is infeasible (i.e., quantity not sufficient for tissue-based CGP), OR • For patients progressing on EGFR tyrosine kinase inhibitors (TKIs). If no genetic alteration is detected by Guardant360®, or if circulating tumor DNA (ctDNA) is insufficient/not detected, tissue-based genotyping should be considered. Other plasma-based CGP tests are considered INVESTIGATIONAL. CGP and the use of circulating tumor DNA is considered INVESTIGATIONAL for all other indications. 1 The use of circulating tumor cells is considered INVESTIGATIONAL for all indications.
    [Show full text]
  • Year 11 GCSE History Paper 1 – Medicine Information Booklet
    Paper 1 Medicine Key topics 1 and 2 (1250-1500, 1500-1700) Year 11 GCSE History Paper 1 – Medicine Information booklet Medieval Renaissance 1250-1500 1500-1750 Enlightenment Modern 1900-present 1700-1900 Case study: WW1 1 Paper 1 Medicine Key topics 1 and 2 (1250-1500, 1500-1700) Key topic 1.1 – Causes of disease 1250-1500 At this time there were four main ideas to explain why someone might become ill. Religious reasons - The Church was very powerful at this time. People would attend church 2/3 times a week and nuns and monks would care for people if they became ill. The Church told people that the Devil could infect people with disease and the only way to get better was to pray to God. The Church also told people that God could give you a disease to test your faith in him or sometimes send a great plague to punish people for their sins. People had so much belief in the Church no-one questioned the power of the Church and many people had believed this explanation of illness for over 1,000 years. Astrology -After so many people in Britain died during the Black Death (1348-49) people began to look for new ways to explain why they became sick. At this time doctors were called physicians. They would check someone’s urine and judge if you were ill based on its colour. They also believed they could work out why disease you had by looking at where the planets were when you were born.
    [Show full text]
  • Early History of Infectious Disease 
    © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CHAPTER ONE EARLY HISTORY OF INFECTIOUS 1 DISEASE Kenrad E. Nelson, Carolyn F. Williams Epidemics of infectious diseases have been documented throughout history. In ancient Greece and Egypt accounts describe epidemics of smallpox, leprosy, tuberculosis, meningococcal infections, and diphtheria.1 The morbidity and mortality of infectious diseases profoundly shaped politics, commerce, and culture. In epidemics, none were spared. Smallpox likely disfigured and killed Ramses V in 1157 BCE, although his mummy has a significant head wound as well.2 At times political upheavals exasperated the spread of disease. The Spartan wars caused massive dislocation of Greeks into Athens triggering the Athens epidemic of 430–427 BCE that killed up to one half of the population of ancient Athens.3 Thucydides’ vivid descriptions of this epidemic make clear its political and cultural impact, as well as the clinical details of the epidemic.4 Several modern epidemiologists have hypothesized on the causative agent. Langmuir et al.,5 favor a combined influenza and toxin-producing staphylococcus epidemic, while Morrens and Chu suggest Rift Valley Fever.6 A third researcher, Holladay believes the agent no longer exists.7 From the earliest times, man has sought to understand the natural forces and risk factors affecting the patterns of illness and death in society. These theories have evolved as our understanding of the natural world has advanced, sometimes slowly, sometimes, when there are profound break- throughs, with incredible speed. Remarkably, advances in knowledge and changes in theory have not always proceeded in synchrony. Although wrong theories or knowledge have hindered advances in understanding, there are also examples of great creativity when scientists have successfully pursued their theories beyond the knowledge of the time.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Medical Microbiology and Infectious Diseases 22% Specialists in 2017 = 11%3
    Medical Microbiology & Infectious Diseases Profile Updated December 2019 1 Table of Contents Slide . General Information 3-5 . Total number & number/100,000 population by province, 2019 6 . Number/100,000 population, 1995-2019 7 . Number by gender & year, 1995-2019 8 . Percentage by gender & age, 2019 9 . Number by gender & age, 2019 10 . Percentage by main work setting, 2019 11 . Percentage by practice organization, 2017 12 . Hours worked per week (excluding on-call), 2019 13 . On-call duty hours per month, 2019 14 . Percentage by remuneration method 15 . Professional & work-life balance satisfaction, 2019 16 . Number of retirees during the three year period of 2016-2018 17 . Employment situation, 2017 18 . Links to additional resources 19 2 General information Microbiology and infectious diseases focuses on the diagnosis and treatment of infectious diseases; thus, it is concerned with human illness due to micro-organisms. Since such disease can affect any and all organs and systems, this specialist must be prepared to deal with any region of the body. The specialty of Medical Microbiology and Infectious Disease consists primarily of four major spheres of activity: 1. the provision of clinical consultations on the investigation, diagnosis and treatment of patients suffering from infectious diseases; 2. the establishment and direction of infection control programs across the continuum of care; 3. public health and communicable disease prevention and epidemiology; 4. the scientific and administrative direction of a diagnostic microbiology laboratory. Source: Pathway evaluation program 3 General information Once you’ve completed medical school, it takes an additional 5 years of Royal College-approved residency training to become certified in medical microbiology and infectious disease.
    [Show full text]
  • Chlamydia Trachomatis Infection Is Driven by Nonprotective Immune Cells That Are Distinct from Protective Populations
    Pathology after Chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations Rebeccah S. Lijeka,b,1, Jennifer D. Helblea, Andrew J. Olivea,c, Kyra W. Seigerb, and Michael N. Starnbacha,1 aDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; bDepartment of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075; and cDepartment of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 Edited by Rafi Ahmed, Emory University, Atlanta, GA, and approved December 27, 2017 (received for review June 23, 2017) Infection with Chlamydia trachomatis drives severe mucosal immu- sequence identity, Chlamydia muridarum, the extent to which the nopathology; however, the immune responses that are required for molecular pathogenesis of C. muridarum represents that of Ct is mediating pathology vs. protection are not well understood. Here, unknown (6). Ct serovar L2 (Ct L2) is capable of infecting the we employed a mouse model to identify immune responses re- mouse upper genital tract when inoculated across the cervix into quired for C. trachomatis-induced upper genital tract pathology the uterus (7, 8) but it does not induce robust immunopathology. and to determine whether these responses are also required for This is consistent with the human disease phenotype caused by Ct L2, bacterial clearance. In mice as in humans, immunopathology was which disseminates to the lymph nodes causing lymphogranuloma characterized by extravasation of leukocytes into the upper genital venereum (LGV) and is not a major cause of mucosal immunopa- thology in the female upper genital tract (uterus and ovaries). tract that occluded luminal spaces in the uterus and ovaries.
    [Show full text]
  • Diagnostic Tests Diagnostic Tests Attempt to Classify Whether Somebody Has a Disease Or Not Before Symptoms Are Present
    community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence stcp-rothwell-diagnostictests Diagnostic Tests Diagnostic tests attempt to classify whether somebody has a disease or not before symptoms are present. We are interested in detecting the disease early, while it is still curable. However, there is a need to establish how good a diagnostic test is in detecting disease. In this situation a 2x2 table similar to the below would be produced to test how effective a diagnostic test is at predicting the outcome of interest. A number of different measures can be calculated from this information. True Diagnosis Disease +ve Disease -ve Total Test Results +ve a b a+b -ve c d c+d a+c b+d N = This is the proportion of diseased individuals that are correctly Sensitivity: ( ) identified by the test as having the disease. (+ | ) + = This is the proportion of non-diseased individuals that Specificity: ( ) are correctly identified by the test as not having the disease. ( | ) + = This is the proportion − of individuals with Positive Predictive Value**: ( ) positive test results that are correctly diagnosed and actually have the disease. ( | + ) + = This is the proportion of individuals with Negative Predictive Value**: ( ) negative test results that are correctly diagnosed and do not have the disease. ( | + ) − © Joanne Rothwell Reviewer: Chris Knox University of Sheffield University of Sheffield Medical Statistics – diagnostic tests Positive Likelihood Ratio: = This gives a ratio of the test being positive + for patients with disease compared with those without disease. Aim to be much greater − than 1 for a good test.
    [Show full text]