Two Potential Meteorite Impact Craters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
STEINHEIM CRATER Steinheim Am Albuch, Steinheim Crater Is Located in the Swabain Alb
STEINHEIM CRATER Steinheim am Albuch, Steinheim crater is located in the Swabain Alb. Since the impact a small town has been built on site. However the crater still remains popular due to it being the best preserved crater with a central uplift. Formation: The Steinheim crater is the smaller partner to the Ries crater. It is located in Alb, Steinheim. It is thought that the two craters were formed 15million years ago. However, there are two theories to how the Steinheim crater formed; either a double meteorite or a 150m fragmentation of one larger impactor as it collided with the earth to form the 24km Reis crater. In either theory, the impactor travelled at around 7.2x104 km/hour impacted the Earth. This meteorite collided with the earth with a similar amount of energy as 100,000 Hiroshima bombs. It is thought that the meteorite hit the earth’s crust at an angle between 30 and 50 degrees which, on impact, caused the pressure to increase by a million bar. As the pressure rises, the temperature also increases to 30,000 degrees causing rocks to disintegrate. Formation of a complex crater Morphology The Steinheim crater is a typical complex crater. This means it has a central uplift in the centre of the crater. The central uplift has been measured to be around 1000m in diameter and be 50m above the basin floor, and the crater itself being 3.8 km in diameter and the sides measuring to ~100m deep. However according to gravity re- searchers, the crater could in fact be double the size! Because the impact crater is exposed, it is subject to erosion and weathering and therefore the morphology of the crater has changed little each year that passes. -
Nördlingen 2010: the Ries Crater, the Moon, and the Future of Human Space Exploration, P
Program and Abstract Volume LPI Contribution No. 1559 The Ries Crater, the Moon, and the Future of Human Space Exploration June 25–27, 2010 Nördlingen, Germany Sponsors Museum für Naturkunde – Leibniz-Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Germany Institut für Planetologie, University of Münster, Germany Deutsches Zentrum für Luft- und Raumfahrt DLR (German Aerospace Center) at Berlin, Germany Institute of Geoscience, University of Freiburg, Germany Lunar and Planetary Institute (LPI), Houston, USA Deutsche Forschungsgemeinschaft (German Science Foundation), Bonn, Germany Barringer Crater Company, Decatur, USA Meteoritical Society, USA City of Nördlingen, Germany Ries Crater Museum, Nördlingen, Germany Community of Otting, Ries, Germany Märker Cement Factory, Harburg, Germany Local Organization City of Nördlingen Museum für Naturkunde – Leibniz- Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin Ries Crater Museum, Nördlingen Center of Ries Crater and Impact Research (ZERIN), Nördlingen Society Friends of the Ries Crater Museum, Nördlingen Community of Otting, Ries Märker Cement Factory, Harburg Organizing and Program Committee Prof. Dieter Stöffler, Museum für Naturkunde, Berlin Prof. Wolf Uwe Reimold, Museum für Naturkunde, Berlin Dr. Kai Wünnemann, Museum für Naturkunde, Berlin Hermann Faul, First Major of Nördlingen Prof. Thomas Kenkmann, Freiburg Prof. Harald Hiesinger, Münster Prof. Tilman Spohn, DLR, Berlin Dr. Ulrich Köhler, DLR, Berlin Dr. David Kring, LPI, Houston Dr. Axel Wittmann, LPI, Houston Gisela Pösges, Ries Crater Museum, Nördlingen Ralf Barfeld, Chair, Society Friends of the Ries Crater Museum Lunar and Planetary Institute LPI Contribution No. 1559 Compiled in 2010 by LUNAR AND PLANETARY INSTITUTE The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. -
Brachaniec ACTA LAYAUT
Acta Geologica Polonica, Vol. 66 (2016), No. 1, pp. 99–105 DOI: 10.1515/agp-2016-0005 New moldavites from SW Poland TOMASZ BRACHANIEC, KRZYSZTOF SZOPA and ŁUKASZ KARWOWSKI Department of Geochemistry, Mineralogy and Petrography; Faculty of Earth Science; University of Silesia; Będzińska Str. 60, PL-41-200 Sosnowiec, Poland. E-mails: [email protected], [email protected], [email protected]. ABSTRACT: Brachaniec, T., Szopa, K. and Karwowski, Ł. 2016. New moldavites from SW Poland. Acta Geologica Polonica, 66 (1), 99–105.Warszawa. Four newly discovered moldavites from the East and West Gozdnica pits, SW Poland, are characterized. All spec- imens, including other four, reported earlier, are from Upper Miocene fluvial sediments of the Gozdnica For- mation. Their weight varies between 0.529 and 1.196 g. The moldavites are bottle green in colour and have bub- bles and inclusions of lechatelierite. Low degree of corrosion suggests short river transport, apparently eastward from Lusatia. Key words: Moldavites; Tektites; Ries; Fluvial transport; Miocene; Poland. INTRODUCTION distinguish between the impact and terrestrial types of glasses: (1) the impact glass has a chemical composition Large impact craters are relatively rare in geologi- of one lithology or mixture of different rock types that cal record on the Earth. All over the world only 164 are present in the source basement (Dence 1971), (2) it crater structures are above 1 km in diameter and only 40 is characterized by the presence of lechatelierite (Stöf- with with more than 20 km in diameter (Earth Impact fler 1984), and (3) it has inclusions of shocked miner- Database). -
Distal Ejecta from the Ries Crater – Moldavites and Projectile
Large Meteorite Impacts (2003) 4050.pdf DISTAL EJECTA FROM THE RIES CRATER – MOLDAVITES AND PROJECTILE. N. A. Artemieva. Institute for Dynamics of Geospheres, Russian Academy of Science, Leninsky pr., 38, bldg.1, 119334, Moscow, Russia, [email protected] Introduction: Using detailed geological, continuous unit, but, probably, some chaotic spots with petrographic, geochemical, and geographical various thickness. In this upper layer shock pressure constraints we have performed numerical modeling drops quickly with a distance and at 5 km from the studies that relate the Steinheim crater (Da = 3.8 km), impact point is below melting pressure for a porous the Ries crater (Da = 24 km) in Southern Germany, and quartz (45 GPa). Figure 1 shows surface material, the moldavite (tektite) strewn field. The known molten after an impact - possible tektites. It is totally moldavite strewn field extends from about 200 to 450 within the growing crater (the Ries final diameter is 26 km from the center of the Ries to the ENE forming a km). Ejection velocity varies from 1-2 km/s behind the fan with an angle of about 57°. An oblique impact of a projectile to 8-11 km/s in a downrange direction. binary asteroid from a WSW direction appears to The model with more thick sandy layer reveals that explain the locations of the craters and the formation 70% of all tektites originate from the upper 20 m, 90% and distribution of the moldavites [1]. In a presented - from the upper 40 m, and only 10% of the material is study we attempt to answer more questions concerning initially below this depth. -
The Ries-Steinheim Crater Pair and Two Major Earthquakes – New Discoveries Challenging the Double-Impact Theory
The Ries-Steinheim crater pair and two major earthquakes – New discoveries challenging the double-impact theory Elmar Buchner ( [email protected] ) University of Applied Sciences Neu-Ulm Volker Sach Meteorkratermuseum Steinheim Martin Schmieder USRA, Houston, Texas Article Keywords: impact-earthquakes, Nördlinger Ries, Steinheim Basin Posted Date: July 27th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-43745/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract The Nördlinger Ries and the Steinheim Basin are widely perceived as a Middle Miocene impact crater doublet. We discovered two independent earthquake-produced seismite horizons in North Alpine Foreland Basin deposits. The older seismite horizon,associated with the Ries impact is overlain by in situ-preserved distal impact ejecta, forming a unique continental seismite-ejecta couplet within a distance up to 180 km from the crater. The younger seismite unit, also triggered by a major palaeo-earthquake, comprises clastic dikes that cut through the Ries seismite-ejecta couplet. The clastic dikes were likely formed in response to the Steinheim impact, some kyr after the Ries impact, in line with paleontologic results. With the Ries and Steinheim impacts as two separate events, Southern Germany witnessed a double disaster in the Middle Miocene. The magnitude–distance relationship of seismite formation during large earthquakes suggests the seismic and destructive potential of impact-earthquakes may be signicantly underestimated. Introduction The ~24 km-diameter Nördlinger Ries1,2,3,4 and the ~4 km-diameter Steinheim Basin1,5,6,7,8 impact structures in southern Germany (Fig. -
ABSTRACT 1 Terrestrial Impact Craters
MAPPING TERRESTRIAL IMPACT CRATERS WITH THE TANDEM-X DIGITAL ELEVATION MODEL Manfred Gottwald1, Thomas Fritz1, Helko Breit1, Birgit Schättler1, Alan Harris2 1German Aerospace Center, Remote Sensing Technology Institute, Oberpfaffenhofen, D-82234 Wessling, Germany 2German Aerospace Center, Institute of Planetary Research, Rutherfordstr. 2, D-12489 Berlin, Germany ABSTRACT We use the global digital elevation model (DEM) generated in the TanDEM-X mission for map- ping the confirmed terrestrial impact structures in the Earth Impact Database of the Planetary and Space Science Center (PASSC) at the University of New Brunswick, Canada. The TanDEM- X mission generates a global DEM with unprecedented properties. The achieved global coverage together with the improved accuracy (in the sub-10 m range) and spatial resolution (12 m at the equator) opens new opportunities in impact crater research based on terrestrial space-borne remote sensing data. It permits both for simple and complex craters investigations of the mor- phology of the particular structure (rim height, central uplift, ring-like patterns, elevation pro- files) and of the surrounding terrain (local deformation, drainage patterns) of outstanding quali- ty. 1 Terrestrial Impact Craters Earth, in contrast, the crust underwent continuous modification due to various processes such as plate 1.1 Impact Crater Record tectonics, erosion, sedimentation and glaciation. This prevented the development of an unbiased impact Terrestrial impact craters are the relics of collisions of record. Only the ancient continental shields provide the Earth with Solar System objects of different sizes. opportunities for detecting very old impact structures. Such collisions were frequent in the distant past when In other areas, craters of a certain size have remained the Solar System was young but even today solid bod- sufficiently intact only if they were formed rather re- ies from interplanetary space occasionally hit the ter- cently or if their large size has prevented them from restrial surface. -
The Geophysical Signature of Impact Craters
The geophysical signature of impact craters Stephanie Werner Observation, geophysical techniques and implications • Gravity Anomalies • Magnetic Anomalies • Seismic profiling • Electrical /Electromagnetic • Magnetotelluric • Ground Penetrating Radar •Radiometric •… Crater Formation Process Observations:Observations: PhysicalPhysical Shape: circular features Moltke Tycho (2.7 mi) (53 mi) Inverted Stratigraphy: Meteor Crater first recognized by Barringer (only for well preserved craters) Material displacement: Solid material broken up and ejected outside the crater: breccia, tektites Slide from B. Pierazzo Observations:Observations: ShockShock EvidenceEvidence Shatter cones: conical fractures with typical markings produced by shock waves Shocked Material: shocked quartz high pressure minerals Melt Rocks: may result from shock and friction Slide from B. Pierazzo Observations:Observations: GeophysicalGeophysical datadata Gravity anomaly: based on density variations of materials Magnetic: based on general variation of magnetic properties of materials Seismic: sound waves reflection and refraction from subsurface layers with different characteristics Slide from B. Pierazzo Gravity Anomalies Gravity • craters are relatively shallow features, but depressions • associated to brecciation and fracturing, extending to significant depth below the crater floor • fractured rock is less dense than unaltered rock material • dependent size and morphology, density contrast and burial depth – circular negative gravity anomaly Gravity anomaly: Simple crater -
The Steinheim Impact Crater (Germany) — Where Is the Ejecta
77th Annual Meteoritical Society Meeting (2014) 5168.pdf THE STEINHEIM IMPACT CRATER (GERMANY) – WHERE IS THE EJECTA BLANKET? E. Buchner1,2 and M. Schmieder3. 1HNU - Neu-Ulm University, Germany. 2Institut für Mineralogie, Universität Stuttgart, Germa- ny. E-mail: [email protected]. 3School of Earth and Environment, University of Western Australia, Australia. Introduction: The exceptionally well-preserved ~24 km Nördlinger Ries and the ~3.8 km Steinheim Basin impact craters (e.g., [1]) are situated on the limestone plateau of the Swabian- Franconian Alb. Both impact craters are thought to have formed simultaneously in the Middle Miocene by the impact of a binary asteroid (e.g., [2]). The Nördlinger Ries crater is unique in terms of the state of preservation of the impact crater morphology and its impact ejecta blanket. The Steinheim Basin exhibits a distinct morphological depression that is filled by a lithic impact breccia preserved in its original thickness and position. However, no im- pact ejecta are known further outside the Steinheim crater. Description of the Problem: The transfer of up to 2 crater radii for a continuous ejecta blanket and of 2 to 3 crater diameters for distal ejecta (e.g., [3]) would be typical for terrestrial impact structures. Proximal and medial Steinheim ejecta could be ex- pected within a distance of up to 4 km, distal ejecta within a dis- tance of up to 12 km from the crater rim. However, an intense search for proximal or distal Steinheim ejecta outside the actual impact crater was not successful. In the light of the very similar sedimentary target setting and erosional history in the Ries- Steinheim area, the contradiction of a widely preserved Ries ejec- ta blanket versus the apparent lack of any remnants of Steinheim ejecta that travelled beyond the crater rim remains puzzling. -
Meteor Crater, Arizona
Petrographic, X-ray diffraction, and electron spin resonance analysis of deformed calcite: Meteor Crater, Arizona Item Type Article; text Authors Burt, J. B.; Pope, M. C.; Watkinson, A. J. Citation Burt, J. B., Pope, M. C., & Watkinson, A. J. (2005). Petrographic, Xray diffraction, and electron spin resonance analysis of deformed calcite: Meteor Crater, Arizona. Meteoritics & Planetary Science, 40(2), 297-306. DOI 10.1111/j.1945-5100.2005.tb00381.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 05/10/2021 06:22:06 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655967 Meteoritics & Planetary Science 40, Nr 2, 297–306 (2005) Abstract available online at http://meteoritics.org Petrographic, X-ray diffraction, and electron spin resonance analysis of deformed calcite: Meteor Crater, Arizona Jason B. BURT,1†* Mike C. POPE,1 and A. John WATKINSON1 1Department of Geological Sciences, Washington State University, Pullman, Washington 99164, USA †Present address: Department of Geosciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, USA *Corresponding author. E-mail: [email protected] (Received 9 June 2003; revision accepted 16 December 2004) Abstract–Calcite crystals within the Kaibab limestone in Meteor Crater, Arizona, are examined to understand how calcite is deformed during a meteorite impact. The Kaibab limestone is a silty fine- grained and fossiliferous dolomudstone and the calcite crystals occur as replaced evaporite nodules with impact-induced twinning. Twinning in the calcite is variable with deformational regimes based on abundances of crystals with twins and twin densities within crystals. -
Comment Article Evidence That Lake Cheko Is Not an Impact Crater
doi: 10.1111/j.1365-3121.2008.00791.x Comment article Evidence that Lake Cheko is not an impact crater G. S. Collins,1 N. Artemieva,2 K. Wu¨ nnemann,3 P. A. Bland,1 W. U. Reimold,3 and C. Koeberl4 1Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, SW7 2AZ London, UK; 2Institute for the Dynamics of Geospheres, Russian Academy of Sciences, Moscow, Russia; 3Museum for Natural History, Humboldt University, Invalidenstrasse 43, 10115 Berlin, Germany; 4Center of Earth Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria ABSTRACT In a provocative paper Gasperini et al. (2007) suggest that Lake is required for an asteroid fragment to traverse the EarthÕs Cheko, a 300-m-wide lake situated a few kilometres down- atmosphere and reach the surface intact and with sufficient range from the assumed epicentre of the 1908 Tunguska event, velocity to excavate a crater the size of Lake Cheko. Inferred is an impact crater. In this response, we present several lines of tensile strengths of large stony meteorites during atmospheric observational evidence that contradicts the impact hypothesis disruption are 10–100 times lower. We therefore conclude that for the lakeÕs origin: un-crater-like aspects of the lake mor- Lake Cheko is highly unlikely to be an impact crater. phology, the lack of impactor material in and around the lake, and the presence of apparently unaffected mature trees close Terra Nova, 20, 165–168, 2008 to the lake. We also show that a tensile strength of 10–40 MPa over 170 confirmed impact structures The first piece of evidence does give Introduction on the Earth (Earth Impact Database, pause for thought, but could easily be An impact origin for Lake Cheko and 2007). -
Central Ring Structure Identified in One of the World's Best-Preserved Impact
Central ring structure identi®ed in one of the world's best-preserved impact craters A.C. Gebhardt F. Niessen Alfred Wegener Institute for Polar and Marine Research, Columbusstraûe, 27568 Bremerhaven, Germany C. Kopsch Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany ABSTRACT Seismic refraction and re¯ection data were acquired in 2000 and 2003 to study the morphology and sedimentary ®ll of the remote El'gygytgyn crater (Chukotka, northeast- ern Siberia; diameter 18 km). These data allow a ®rst insight into the deeper structure of this unique impact crater. Wide-angle data from sonobuoys reveal a ®ve-layer model: a water layer, two lacustrine sedimentary units that ®ll a bowl-shaped apparent crater mor- phology consisting of an upper layer of fallback breccia with P-wave velocities of ;3000 m/s, and a lower layer of brecciated bedrock (velocities .3600 m/s). The lowermost layer shows a distinct anticline structure that, by analogy with other terrestrial and lunar cra- ters of similar size, can be interpreted as a central ring structure. The El'gygytgyn crater exhibits a well-expressed morphology that is typical of craters formed in crystalline target rocks. Keywords: impact crater, El'gygytgyn, lakes, seismic refraction, seismic re¯ection. INTRODUCTION (Belyi, 1998; Gurov et al., 1979a, 1979b). The Grette, 2006; Nolan et al., 2002) formed in- The El'gygytgyn crater, located in the Rus- Anadyr Mountains are part of the Okhotsk- side the crater (the crater and crater lake are sian Arctic, is one of the world's best- Chukotka Volcanic Belt, composed of Late not concentric; see Fig. -
Dating Ilumetsa Craters (Estonia) Based on Charcoal Emplaced Within Their Proximal Ejecta Blankets
Lunar and Planetary Science XLVIII (2017) 1879.pdf Dating Ilumetsa Craters (Estonia) DATING ILUMETSA CRATERS (ESTONIA) BASED ON CHARCOAL EMPLACED WITHIN THEIR PROXIMAL EJECTA BLANKETS. A. Losiak1, A. Jõeleht2, J. Plado2, M. Szyszka3, E.M. Wild4, M. Bronikowska3, C. Belcher5, K. Kirsimäe2, P. Steier4. 1Planetary Geology Lab, Institute of Geological Sciences, Polish Academy of Sciences, Poland ([email protected]); 2Department of Geology, University of Tartu, Estonia ([email protected], [email protected], [email protected]), 3Institute of Geology, Adam Mickiewicz University in Poznan ([email protected], [email protected]); 4VERA Laboratory, Faculty of Physics—Isotope Research & Nuclear Physics, University of Vienna ([email protected], [email protected]); 5wildFIRE Lab, Hatherly Laboratories, University of Exeter, UK ([email protected]). Introduction: The Ilumetsa crater field in SE Estonia The aim of this current study was to determine/confirm the consists of two structures with diameters of 75-80 m age of those structures by 14C dating of organic material (Põrguhaud /Hell's Grave /Ilumetsa Large (IL)) and ~50 m covered by the proximal ejecta and search for possible impact (Sügavhaud /The Deep Grave /Ilumetsa Small – (IS)) with true related charcoals. This approach was recently successfully depths of about 8 and 3.5 m, respectively [1, Fig. 1]. Both applied to dating crater Kaali Main [5]. Additionally, our study structures are surrounded with a rim up to a few meters high attempts to determine if Ilumetsa was indeed created during an which is highest in the eastern parts (max.