Palm Biology in Relation to Horticulture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GROWING Mauritia Flexuosa in PALM BEACH COUNTY
GROWING Mauritia flexuosa IN PALM BEACH COUNTY Submitted by Charlie Beck Mauritia flexuosa is a very large palm with deeply segmented palmate leaves and rounded petioles. In habitat, this dioecious palm grows 15 foot wide leaves on petioles 30 feet long. The stems can reach 80 feet tall. Its natural range is wet areas in Northern South America east of the Andes and also reaching into Trinidad. It usually grows in permanently swampy areas. This palm provides food and nesting sites for Macaws (See photo on back cover). Fish, turtles, tortoises, agoutis, peccares, deer, pacas, and iguanas also eat its fruit. I recently attended a meeting of the South Florida Palm Society and it was mentioned that Mauritia did not grow in South Florida. I knew the speaker was not aware of the fine specimens growing at Richard Moyroud’s Mesozoic Landscapes Nursery in Palm Beach County. The nursery is located near Hypoluxo Road west of Rt. 441 – not considered a warm location. I saw these palms planted at his nursery several years ago when I went out there to purchase some native plants. I heard reports that Richard’s Mauritia palms survived our record cold winter, so I called Richard to get a status report. He invited me to come out to the nursery to see for myself. He has specimens growing in the nursery and in a private 3 acre swamp garden located behind the Mauritia flexuosa planted in Richard nursery which is off limits to his customers. This was a rare Moyroud’s garden opportunity to have Richard lead me on a tour of his swamp garden. -
Caranan Fiber from Mauritiella Armata Palm Tree As Novel Reinforcement for Epoxy Composites
polymers Article Caranan Fiber from Mauritiella armata Palm Tree as Novel Reinforcement for Epoxy Composites Andressa Teixeira Souza 1 , Raí Felipe Pereira Junio 1, Lucas de Mendonça Neuba 1 , Verônica Scarpini Candido 2, Alisson Clay Rios da Silva 2, Afonso Rangel Garcez de Azevedo 3 , Sergio Neves Monteiro 1,* and Lucio Fabio Cassiano Nascimento 1 1 Department of Materials Science, Military Institute of Engineering-IME, Rio de Janeiro 22290-270, Brazil; [email protected] (A.T.S.); [email protected] (R.F.P.J.); [email protected] (L.d.M.N.); [email protected] (L.F.C.N.) 2 Materials Science and Engineering, Federal University of Para-UFPA, Rodovia BR-316, km 7.5-9.0, Centro, Ananindeua, 67000-000, Brazil; [email protected] (V.S.C.); [email protected] (A.C.R.d.S.) 3 Department of Agricultural Engineering and Environment, Federal Fluminense University—UFF, Rua Passo da Pátria, 156, São Domingo, Niteroi, Rio de Janeiro 24210-240, Brazil; [email protected] * Correspondence: [email protected] or [email protected] Received: 29 July 2020; Accepted: 1 September 2020; Published: 8 September 2020 Abstract: A growing environmental concern is increasing the search for new sustainable materials. In this scenario, natural lignocellulosic fibers (NLFs) became an important alternative to replace synthetic fibers commonly used as composites reinforcement. In this regard, unknown NLFs such as the caranan fiber (Mauritiella armata) found in South American rain forests revealed promising properties for engineering applications. Thus, for the first time, the present work conducted a technical characterization of caranan fiber-incorporated composites. -
Tree Pruning: the Basics! Pruning Objectives!
1/12/15! Tree Pruning: The Basics! Pruning Objectives! Improve Plant Health! Safety! Aesthetics! Bess Bronstein! [email protected] Direct Growth! Pruning Trees Increase Flowers & Fruit! Remember-! Leaf, Bud & Branch Arrangement! ! Plants have a genetically predetermined size. Pruning cant solve all problems. So, plant the right plant in the right way in the right place.! Pruning Trees Pruning Trees 1! 1/12/15! One year old MADCap Horse, Ole!! Stem & Buds! Two years old Three years old Internode Maple! Ash! Horsechestnut! Dogwood! Oleaceae! Node Caprifoliaceae! Most plants found in these genera and families have opposite leaf, bud and branch arrangement.! Pruning Trees Pruning Trees One year old Node & Internode! Stem & Buds! Two years old Three years old Internode Node! • Buds, leaves and branches arise here! Bud scale scars - indicates yearly growth Internode! and tree vigor! • Stem area between Node nodes! Pruning Trees Pruning Trees 2! 1/12/15! One year old Stem & Buds! Two years old Dormant Buds! Three years old Internode Bud scale scars - indicates yearly growth and tree vigor! Node Latent bud - inactive lateral buds at nodes! Latent! Adventitious" Adventitious bud! - found in unexpected areas (roots, stems)! Pruning Trees Pruning Trees One year old Epicormic Growth! Stem & Buds! Two years old Three years old Growth from dormant buds, either latent or adventitious. Internode These branches are weakly attached.! Axillary (lateral) bud - found along branches below tips! Bud scale scars - indicates yearly growth and tree vigor! Node -
Certified Nursery
CERTIFIED NURSERY Floribunda Palms and Exotics #BRN: 0120 Hawaiian Acres Road 10 Mt. View, HI 96771 VALID FROM YEAR: 2021 Contact: Jeff Marcus PHONE: (808) 966-8003 Date Inspected: 7/28/2020 Island: Hawaii Date Inventory Reviewed: 10/21/2020 Plant Genus Pot Sizes Acanthophoenix crinita Seedling, 4", 1 Gallon, 3 Gallon Acanthophoenix rubra Seedling, 4", 1 Gallon, 3 Gallon Acoelorraphe wrightii Seedling, 4", 1 Gallon, 3 Gallon Actinokentia divaricata Seedling, 4", 1 Gallon, 3 Gallon Aiphanes erosa Seedling, 4", 1 Gallon, 3 Gallon Allagoptera arenaria Seedling, 4", 1 Gallon, 3 Gallon Allagoptera leucocalyx Seedling, 4", 1 Gallon, 3 Gallon Anthurium clavigerum Seedling, 4", 1 Gallon, 3 Gallon Anthurium decipiens Seedling, 4", 1 Gallon, 3 Gallon Anthurium hookeri Seedling, 4", 1 Gallon, 3 Gallon Anthurium pseudospectabile Seedling, 4", 1 Gallon, 3 Gallon Anthurium trilobum Seedling, 4", 1 Gallon, 3 Gallon Anthurium veitchii Seedling, 4", 1 Gallon, 3 Gallon Archontophoenix cunninghamiana v. Illiwara Seedling, 4", 1 Gallon, 3 Gallon Archontophoenix maxima Seedling, 4", 1 Gallon, 3 Gallon Archontophoenix myolensis Seedling, 4", 1 Gallon, 3 Gallon Archontophoenix purpurea Seedling, 4", 1 Gallon, 3 Gallon Archontophoenix tuckerii Seedling, 4", 1 Gallon, 3 Gallon Areca catechu Seedling, 4", 1 Gallon, 3 Gallon Areca guppyana Seedling, 4", 1 Gallon, 3 Gallon Areca hutchinsoniana Seedling, 4", 1 Gallon, 3 Gallon Areca latiloba Seedling, 4", 1 Gallon, 3 Gallon Areca macrocalyx (red crownshaft) Seedling, 4", 1 Gallon, 3 Gallon Areca macrocarpa Seedling, -
From Dendrochronology to Allometry
Concept Paper From Dendrochronology to Allometry Franco Biondi DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA; [email protected]; Tel.: +1-775-784-6921 Received: 17 December 2019; Accepted: 24 January 2020; Published: 27 January 2020 Abstract: The contribution of tree-ring analysis to other fields of scientific inquiry with overlapping interests, such as forestry and plant population biology, is often hampered by the different parameters and methods that are used for measuring growth. Here I present relatively simple graphical, numerical, and mathematical considerations aimed at bridging these fields, highlighting the value of crossdating. Lack of temporal control prevents accurate identification of factors that drive wood formation, thus crossdating becomes crucial for any type of tree growth study at inter-annual and longer time scales. In particular, exactly dated tree rings, and their measurements, are crucial contributors to the testing and betterment of allometric relationships. Keywords: tree rings; stem growth; crossdating; radial increment 1. Introduction Dendrochronology can be defined as the study and reconstruction of past changes that impacted tree growth. The name of the science derives from the combination of three Greek words: δ"´νδρoν (tree), χρóνo& (time), and λóγo& (study). As past changes can be caused by processes that are internal as well as external to a tree, both environmental factors and tree physiology are subject to dendrochronological inquiry. Knowledge of the principles and methods of tree-ring analysis therefore allows the investigation of topics ranging from climate history to forest dynamics, from the dating of ancient ruins to the timing of wood formation. -
Maine Tree Species Fact Sheet
Maine Tree Species Fact Sheet Common Name: American Chestnut (Chestnut) Botanical Name: Castanea dentata Tree Type: Deciduous Physical Description: Growth Habit: The American chestnut is a rapidly growing tree. The bark on young trees is smooth and reddish-brown in color. On older trees the bark is dark brown, shallowly fissured, with broad, scaly ridges. The twigs are stout, greenish-yellow or reddish-brown in color and somewhat swollen at the base of the buds. The pith is star-shaped in the cross section. The http://www.dcnr.state.pa.us/forestry/commontr/images/AmericanChestnut.gif oblong, simple, alternate leaves are 10 inches long and 2 inches wide. They are narrow at the base, taper-pointed, sharply toothed and smooth on both sides. The leaves are dark green in color above and paler beneath. Height: The chestnut once grew to a height of 60-80 feet tall, sometimes reaching 100 feet or more with a trunk diameter of 10 feet. More commonly, the trunk diameter was 3-4 feet. Shape: In the forest, the chestnut has a tall, straight trunk free of limbs and a small head. When not crowded, the trunk divides into three or four limbs and forms a low, broad top. Fruit/Seed Description/Dispersal Methods: The flowers are monoecious, small and creamy yellow. They appear in catkins up to 8 inches long. They are separate, but usually appear on the same spike in the summer. The fruit is a light brown burr with spines on the outside and hair on the inside. The burr opens with the first frost exposing and dropping three nuts. -
Seed Geometry in the Arecaceae
horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud. -
Mauritiella Armata (Mart) Burret - Arecaceae.
Annals of Geographical Studies Volume 2, Issue 1, 2019, PP 17-19 Ecology and importance of the Conservation from Specie Buritizinho (Mauritiella Armata (Mart) Burret - Arecaceae.) Thamyres Sabrina Gonçalves Geographer Master of Forest Science PhD student in Plant Production in Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Minas Gerais – Brasil. Teacher in Agronomy Departament. *Corresponding Author: Thamyres Sabrina Gonçalves, Geographer Master of Forest Science PhD student in Plant Production in Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Minas Gerais – Brasil. Teacher in Agronomy Departament, E-mail: [email protected]. ABSTRACT The aim of this work is to bring information about a key species for the conservation of Veredas that is virtually unknown in scientific research term because lacks basic data, making a review of their biology and ecológy. The species Mauritiella armata popularly known as palm trees of the family of Arecaceae. The M. armata usage capabilities for various purposes have been addressed in some jobs where it was possible to use a potential to all parts of this plant, however it is difficult to find scientific articles publications about this specie indicating a need to carry out research in ecology M. armata, in order to bring useful information in the conservation strategies of this species. Keywords: autoecology, ecology of populations, natural history, swamp forests. INTRODUCTION part of the Cerrado, in areas where water recharge present hydromorphic soils and One of the major problems that have in plant landscape marked by the dominance of Mauritia ecology is the absence of basic data about the flexuosa, popularly known as Buriti. -
Biology for Dummies, 2Nd Edition
spine=.7680” Science/Life Sciences/Biology ™ Making Everything Easier! 2nd Edition The fast and easy way 2nd Edition to understand biology Open the book and find: From molecules to animals, cells to ecosystems, this friendly • Plain-English explanations of how guide answers all your questions about how living things living matter works work. Written in plain English and packed with helpful • The parts and functions of cells Biology illustrations, tables, and diagrams, it cuts right to the chase with easy-to-absorb explanations of the life processes • How food works as a source of energy Biology common to all organisms. • The 411 on reproduction and • Biology 101 — get the lowdown on how life is studied and open a genetics window on the world’s organisms • Fascinating facts about DNA • Jump into the gene pool — discover how cell reproduction technology and genetics work, from making sense of Mendel’s Law of Segregation to dealing with DNA • The biology of bacteria and viruses • Explore the living world — find out how ecology and evolution • How humans affect the circle of life are the glue that holds everything together • An overview of human anatomy • Let’s get physical — peruse the principles of physiology to get a handle on animal structure and function • Innate human defenses (and adaptive ones, too!) • Go green — take a look at the life of plants and understand how they acquire energy, reproduce, and so much more Learn to: • Identify and dissect the many structures Go to Dummies.com® and functions of plants and animals for videos, step-by-step examples, how-to articles, or to shop! • Grasp the latest discoveries in evolutionary, reproductive, and ecological biology • Think like a biologist and use scientific methods $19.99 US / $23.99 CN / £14.99 UK Rene Fester Kratz, PhD, is a Biology Instructor at Everett Community ISBN 978-0-470-59875-7 Rene Fester Kratz, PhD College and a member of the North Cascades and Olympic Science Author of Molecular and Cell Biology Partnership. -
The Vegetation History of an Amazonian Domed Peatland
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lancaster E-Prints ÔØ ÅÒÙ×Ö ÔØ The vegetation history of an Amazonian domed peatland Thomas J. Kelly, Ian T. Lawson, Katherine H. Roucoux, Timothy R. Baker, Timothy D. Jones, Nicole K. Sanderson PII: S0031-0182(16)30782-9 DOI: doi: 10.1016/j.palaeo.2016.11.039 Reference: PALAEO 8074 To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology Received date: 10 March 2016 Revised date: 14 November 2016 Accepted date: 23 November 2016 Please cite this article as: Kelly, Thomas J., Lawson, Ian T., Roucoux, Katherine H., Baker, Timothy R., Jones, Timothy D., Sanderson, Nicole K., The vegetation history of an Amazonian domed peatland, Palaeogeography, Palaeoclimatology, Palaeoecology (2016), doi: 10.1016/j.palaeo.2016.11.039 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT The vegetation history of an Amazonian domed peatland Thomas J. Kelly1*, Ian T. Lawson2, Katherine H. Roucoux2, Timothy R. Baker1, Timothy D. Jones3, and Nicole K. Sanderson4. 1. School of Geography, University of Leeds, Leeds. LS2 9JT, U.K. 2. Department of Geography and Sustainable Development, University of St Andrews, Irvine Building, North Street, St Andrews. -
Chestnut Culture in California
PUBLICATION 8010 Chestnut Culture in California PAUL VOSSEN, University of California Cooperative Extension Farm Advisor, Sonoma County he chestnut is a delicious nut produced on large, magnificent trees on millions of Tacres of native habitat in the Northern Hemisphere, particularly in China, Korea, UNIVERSITY OF Japan, and Southern Europe. The entire eastern half of the United States was once CALIFORNIA covered with native chestnut trees until a blight fungus introduced from Asia Division of Agriculture destroyed them in the early 1900s. The fleshy nut is sweet with a starchy texture and and Natural Resources has a low fat content, resembling a cereal grain. The nuts are eaten as traditional foods in much of Asia and Europe, where they are consumed fresh, cooked, candied, http://anrcatalog.ucdavis.edu and as a source of flour for pastries. The chestnut tree is in the same family as beeches and oaks (Fagaceae). The for- midable, spiny chestnut burr is the equivalent of the cap on an acorn. Chestnuts belong to the genus Castanea, with four main economic species: C. dentata (North American), C. mollissima (Chinese), C. sativa (European), and C. crenata (Japanese). It is not related to the horse chestnut (Aesculus spp.). The tree has gray bark and is deciduous, with leaves that are 5 to 7 inches (12.5 to 18 cm) long, sharply serrated, oblong-lanceolate, and pinnately veined. Domestication of the chestnut is still pro- gressing, with much of the world’s production collected from natural stands. SPECIES Four species of chestnut are grown in North America (see table 1). They exist as pure species or, more commonly, as hybrids of the various species because they read- ily cross with one another. -
FLORA of the GUIANAS New York, November 2017
FLORA OF THE GUIANAS NEWSLETTER N° 20 SPECIAL WORKSHOP ISSUE New York, November 2017 FLORA OF THE GUIANAS NEWSLETTER N° 20 SPECIAL WORKSHOP ISSUE Flora of the Guianas (FOG) Meeting and Seminars and Scientific symposium “Advances in Neotropical Plant Systematics and Floristics,” New York, 1–3 November 2017 The Flora of the Guianas is a co-operative programme of: Museu Paraense Emílio Goeldi, Belém; Botanischer Garten und Botanisches Museum Berlin-Dahlem, Berlin; Institut de Recherche pour le Développement, IRD, Centre de Cayenne, Cayenne; Department of Biology, University of Guyana, Georgetown; Herbarium, Royal Botanic Gardens, Kew; New York Botanical Garden, New York; Nationaal Herbarium Suriname, Paramaribo; Muséum National d’Histoire Naturelle, Paris; Nationaal Herbarium Nederland, Utrecht University branch, Utrecht, and Department of Botany, Smithsonian Institution, Washington, D.C. For further information see the website: http://portal.cybertaxonomy.org/flora-guianas/ Published on April 2019 Flora of the Guianas Newsletter No. 20. Compiled and edited by B. Torke New York Botanical Garden, New York, USA 2 CONTENTS 1. SUMMARY ...................................................................................................................... 5 2. MEETING PROGRAM .................................................................................................... 5 3. SYMPOSIUM PROGRAM AND ABSTRACTS ............................................................... 7 4. MINUTES OF THE ADVISORY BOARD MEETING ....................................................