Use of Location (Relative Direction and Distance) Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPIDERS of WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box
Young, O . P., T. C . Lockley and G . B . Edwards . 1989 . Spiders of Washington County, Mississippi . J . Arachnol ., 17 :27-41 . SPIDERS OF WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box 346 Stoneville, Mississippi 38776 USA Timothy C. Lockley Imported Fire Ant Station USDA-APHIS-PPQ 3505 25th Avenue Gulfport, Mississippi 39501 USA and G. B. Edwards Florida State Collection of Arthropods Division of Plant Industry Florida Dept. Agric. & Cons . Serv. P.O. Box 1269 Gainesville, Florida 32602 USA ABSTRACT Over a seven-year period, approximately 35,000 spiders representing 26 families, 133 genera, and 234 species were captured in Washington County, Mississippi, by pitfall, sweepnet, vacuum, bag, and hand. Specimens were collected in 10 different habitat types and in four vegetational strata . Old-field habitats yielded the most species (152) and residential lawns the fewest (14) . Considering all habitats sampled, the ground layer produced 111 species, the herbaceous strata 133, the shrub layer 49, and the tree strata 30 species . The sweepnet method of capture obtained 128 species, pitfall 95, hand 61, vacuum 53, and bagging 19 species. The largest number of species were obtained in spring and early summer (maximum of 125 in May), with the fewest in mid-winter (Jan . = 24) . Twenty-one species were considered abundant, 51 common, 67 uncommon, and 95 rare . Additions to the state list of Dorris (1972) number 102 species, for a new state total of 364 species . A comparison with the North American fauna and with other surveys indicates that Washington County is underrepresented both in cursorial forms active on the soil surface and web-spinning forms typical of undisturbed habitats . -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Visual Reactions to Auditory Stimulus by the Jumping Spider Phidippus Princeps (Araneae, Salticidae)
Visual reactions to auditory stimulus by the jumping spider Phidippus princeps (Araneae, Salticidae) Philip Denbaum Degree project in biology, Master of science (2 years), 2019 Examensarbete i biologi 45 hp till masterexamen, 2019 Biology Education Centre, Uppsala University, and Elizabeth Jakob lab, University of Massachusetts Supervisors: Elizabeth Jakob and Anders Berglund External opponent: Emilie Laurent & Julian Baur Table of contents Abstract 2 Introduction 3 Methods and Materials 5 Spider collection and care 5 General experimental setup 5 Overview of the eyetracker 5 Securing the spider 6 Aligning spider and finding retinas 6 Experiment 7 Data analysis 8 Statistical analyses 9 Results 10 Analysis 1 10 Analysis 2 13 Discussion 14 Future studies 15 Conclusions 16 Acknowledgements 16 References 17 Appendix 19 !1 Abstract Jumping spiders (Family Salticidae) are known for their exceptional vision, including color vision and spatial acuity. Salticids use their vision in many behaviors, including predation and courtship. Recently evidence of their ability to sense airborne vibrations, i.e. sound, was published. I used a specialized jumping-spider-specific eyetracker to study the visual reaction of the retinas of the jumping spider Phidippus princeps when exposed to the sound of a predator. I used a generic wasp sound, previously shown to induce a startle response, as stimulus and played it from different directions. The spiders showed strong reactions to the sound stimulus by large increases in retinal movement when exposed to the stimulus, and they showed no habituation to the stimulus over three rounds of exposure. However, I found no indication that the direction of retinal movement corresponded to the location of the sound source. -
70.1, 5 September 2008 ISSN 1944-8120
PECKHAMIA 70.1, 5 September 2008 ISSN 1944-8120 This is a PDF version of PECKHAMIA 3(2): 27-60, December 1995. Pagination of the original document has been retained. PECKHAMIA Volume 3 Number 2 Publication of the Peckham Society, an informal organization dedicated to research in the biology of jumping spiders. CONTENTS ARTICLES: A LIST OF THE JUMPING SPIDERS (SALTICIDAE) OF THE ISLANDS OF THE CARIBBEAN REGION G. B. Edwards and Robert J. Wolff..........................................................................27 DECEMBER 1995 A LIST OF THE JUMPING SPIDERS (SALTICIDAE) OF THE ISLANDS OF THE CARIBBEAN REGION G. B. Edwards Florida State Collection of Arthropods Division of Plant Industry P. O. Box 147100 Gainesville, FL 32614-7100 USA Robert J. Wolff1 Biology Department Trinity Christian College 6601 West College Drive Palos Heights, IL 60463 USA The following is a list of the jumping spiders that have been reported from the Caribbean region. We have interpreted this in a broad sense, so that all islands from Trinidad to the Bahamas have been included. Furthermore, we have included Bermuda, even though it is well north of the Caribbean region proper, as a more logical extension of the island fauna rather than the continental North American fauna. This was mentioned by Banks (1902b) nearly a century ago. Country or region (e. g., pantropical) records are included for those species which have broader ranges than the Caribbean area. We have not specifically included the islands of the Florida Keys, even though these could legitimately be included in the Caribbean region, because the known fauna is mostly continental. However, when Florida is known as the only continental U.S.A. -
A LIST of the JUMPING SPIDERS of MEXICO. David B. Richman and Bruce Cutler
PECKHAMIA 62.1, 11 October 2008 ISSN 1944-8120 This is a PDF version of PECKHAMIA 2(5): 63-88, December 1988. Pagination of the original document has been retained. 63 A LIST OF THE JUMPING SPIDERS OF MEXICO. David B. Richman and Bruce Cutler The salticids of Mexico are poorly known. Only a few works, such as F. O. Pickard-Cambridge (1901), have dealt with the fauna in any depth and these are considerably out of date. Hoffman (1976) included jumping spiders in her list of the spiders of Mexico, but the list does not contain many species known to occur in Mexico and has some synonyms listed. It is our hope to present a more complete list of Mexican salticids. Without a doubt such a work is preliminary and as more species are examined using modern methods a more complete picture of this varied fauna will emerge. The total of 200 species indicates more a lack of study than a sparse fauna. We would be surprised if the salticid fauna of Chiapas, for example, was not larger than for all of the United States. Unfortunately, much of the tropical forest may disappear before this fauna is fully known. The following list follows the general format of our earlier (1978) work on the salticid fauna of the United States and Canada. We have not prepared a key to genera, at least in part because of the obvious incompleteness of the list. We hope, however, that this list will stimulate further work on the Mexican salticid fauna. Acragas Simon 1900: 37. -
REVISION of the JUMPING SPIDERS of the GENUS PHIDIPPUS (ARANEAE: SALTICIDAE) by G
Occasional Papers of the Florida State Collection of Arthropods Volume 11 2004 REVISION OF THE JUMPING SPIDERS OF THE GENUS PHIDIPPUS (ARANEAE: SALTICIDAE) by G. B. Edwards Florida Department of Agriculture and Consumer Services Charles H. Bronson, Commissioner 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Occasional Papers of the Florida State Collection of Arthropods Volume 11 REVISION OF THE JUMPING SPIDERS OF THE GENUS PHIDIPPUS (ARANEAE: SALTICIDAE) by G. B. EDWARDS Curator: Arachnida & Myriapoda Florida State Collection of Arthropods FDACS, Division of Plant Industry Bureau of Entomology, Nematology, and Plant Pathology P. O. Box 147100, 1911 SW 34th Street Gainesville, Florida 32614-7100 USA 2004 FLORIDA DEPARTMENT OF AGRICULTURE AND CONSUMER SERVICES DIVISION OF PLANT INDUSTRY and THE CENTER FOR SYSTEMATIC ENTOMOLOGY Gainesville, Florida FLORIDA DEPARTMENT OF AGRICULTURE AND CONSUMER SERVICES Charles H. Bronson, Commissioner . Tallahassee Terry L. Rhodes, Assistant Commissioner . Tallahassee Craig Meyer, Deputy Commissioner . Tallahassee Richard D. Gaskalla, Director, Division of Plant Industry (DPI) . Gainesville Connie C. Riherd, Assistant Director, Division of Plant Industry . Gainesville Wayne N. Dixon, Ph.D., Bureau Chief, Entomology, Nematology and Plant Pathology . Gainesville Don L. Harris, Bureau Chief, Methods Development and Biological Control . Gainesville Richard A. Clark, Bureau Chief, Plant and Apiary Inspection . Gainesville Gregory Carlton, Bureau Chief, Pest Eradication and Control . Winter Haven Michael C. Kesinger, Bureau Chief, Budwood Registration . Winter Haven CENTER FOR SYSTEMATIC ENTOMOLOGY BOARD OF DIRECTORS G. B. Edwards, Ph.D., President . DPI, Gainesville Paul E. Skelley, Ph.D., Vice-President . DPI, Gainesville Gary J. Steck, Ph.D., Secretary . -
How Jumping Spiders (Araneae: Salticidae) Find and Use Indirect Routes to Reach Their Sighted Objectives
Peckhamia 184.1 How jumping spiders use indirect routes 1 PECKHAMIA 184.1, 10 May 2019, 1―13 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:1987105E-0056-4FCD-87EF-C29F74073AB9 (registered 08 MAY 2019) ISSN 1944―8120 (online) How jumping spiders (Araneae: Salticidae) find and use indirect routes to reach their sighted objectives David E. Hill 1 1 213 Wild Horse Creek Drive, Simpsonville SC 29680, USA, email [email protected] Abstract. Jumping spiders (Salticidae) are not limited to planning their route at the onset of pursuit, but dynamically collect and use new information as they complete an indirect route or detour. There is strong support for the hypothesis that selection of the immediate route is based on the presence of a visible connection leading to the objective. In turn salticids can use these visible connections as secondary (or intermediate) objectives. Salticids can compute the expected direction and distance of their primary objective after they move to a new location, and frequently turn (reorient) to face their original objective to begin a new segment of pursuit. Completion of a sequence of these pursuit segments allows the salticid to successfully complete a complicated and indirect route of pursuit even when this is not visible at the onset. Key words. Anasaitis, cognition, Colonus, detour, direction information, distance information, gravity information, Habronattus, Hentzia, landmarks, Lyssomanes, Maevia, map direction, orientation, Phidippus, Platycryptus, Portia, reorientation, route selection, secondary objectives, segmented pursuit, Spartaeinae, spatial integration, visual cues The ability of salticid spiders to complete detoured or indirect pursuits of visual objectives has been known for some time (e.g., Bilsing 1920; Heil 1936; Hill 1977, 2008, 2018a; Jackson & Wilcox 1993). -
First Records of the Jumping Spider Menemerus Semilimbatus (Araneae: Salticidae) in Chile
Peckhamia 102.1 Menemerus semilimbatus in Chile 1 PECKHAMIA 102.1, 07 August 2012, 1―3 ISSN 2161―8526 (print) ISSN 1944―8120 (online) First records of the jumping spider Menemerus semilimbatus (Araneae: Salticidae) in Chile Andrés Taucare-Rios 1 and G. B. Edwards 2 1 Departamento de Ciencias del Mar, CENIMA, Universidad Arturo Prat, Casilla 121, Iquique, Chile, email: [email protected] 2 Florida State Collection of Arthropods, Division of Plant Industry, P.O. Box 147100, Gainesville, FL 32614-7100 USA, email: [email protected] KEY WORDS: introduced, synanthropic The jumping spider family (Salticidae) contains more than 500 described genera and over 5,000 described species, which represents about 13% of global Araneae diversity (Platnick, 2012). Jumping spiders are small, diurnal predators which catch their prey mainly by stalking (Foelix, 1996). The salticid fauna of Chile is relatively poor in species. A total of 21 species distributed in eight genera has been reported: Admesturius, Atomosphyrus, Dendryphantes, Euophrys, Hurius, Thiodina, Trydarssus and Tullgrenella (Richardson, 2010). Aguilera & Casanueva (2005) suggest the possible presence of cosmopolitan species which have not been reported. However, these studies have considered primarily the south of the country, and there is little knowledge of the salticid fauna of northern Chile. The genus Menemerus Simon, 1868 is represented by 70 species described worldwide (Platnick, 2012). The spiders of this genus are of moderate size, ranging from 4 to 10 mm, flat-bodied and hairy, with white bands on the side margins of the carapace (Wesolowska, 1999). One of these species is M. semilimbatus (Hahn, 1827), a Mediterranean species widely distributed in Europe (Morano, 2000) and Africa (Wesolowska, 1999). -
Effects of Early Environmental Conditions on the Development of Behaviour in a Jumping Spider
Effects of early environmental conditions on the development of behaviour in a jumping spider Dissertation Zur Erlangung des Doktorgrades an der Fakultät für Mathematik, Informatik und Naturwissenschaften, Fachbereich Biologie, Universität Hamburg vorgelegt von Jannis Liedtke Hamburg, 2015 Genehmigt vom Fachbereich Biologie der Fakultät für Mathematik, lnformatik und Naturwissenschaften an der Universität Hamburg auf Antrag von Frau Professor Dr. J. SCHNEIDER Weiterer Gutachter der Dissertation: Herr Professor Dr. J. GANZHORN Tag der Disputation: 1 1 . Dezember 2015 0 x^k Professor Dr. D. Hanelt Vorsitzender des Fach-Promotionsausschusses Biologie Faculty of Sustainability Institute of Ecology Animal Ecology Workgroup Scharnhorststr. 1 D-21335 Lüneburg Tamar Marcus Tel. 0049 (0)4131 677 2811 Building 13, Room 003 email [email protected] October 5th, 2015 Use of English in the thesis authored by Jannis Liedtke To whom it may concern, This is to affirm that I am a native speaker of English, and that the English used in the thesis entitled “Effects of early environmental conditions on the development of behaviour in a jumping spider" by Jannis Liedtke is clear, coherent, and of university level quality. Yours sincerely, Tamar Marcus Contents Zusammenfassung ...................................................................................................................... 3 Summary .................................................................................................................................... 5 General Introduction -
Araneae: Salticidae)
Doctoral Thesis Taxonomic revision of Vietnamese species of the genus Phintella Strand (Araneae: Salticidae) Phung Thi Hong Luong Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami–Osawa 1–1, Hachioji, Tokyo 192–0397, Japan September in 2017 1 首都大学東京 博士(理学)学位論文(課程博士) 論 文 名 ベトナム産ヤマトハエトリグモ属(クモ目:ハエトリグモ科) の分類学的再検討 (英文) 著 者 フオン テイ ホン ロン 審査担当者 主 査 委 員 委 員 委 員 上記の論文を合格と判定する 平成 年 月 日 首都大学東京大学院理工学研究科教授会 研究科長 DISSERTATION FOR A DEGREE OF DOCTOR OF PHILOSOPHY IN SCIENCE TOKYO METROPOLITAN UNIVERSITY TITLE:Taxonomic revision of Vietnamese species of the genus Phintella Strand (Araneae: Salticidae) AUTHOR:Phung Thi Hong Luong EXAMINED BY Examiner in chief Examiner Examiner Examiner QUALIFIED BY THE GRADUATE SCHOOL OF SCIENCE AND ENGINEERING TOKYO METROPOLITAN UNIVERSITY Dean Date 0 Summary Spiders (the order Araneae) are dominant predatory arthropods in terrestrial ecosystems. The family Salticidae (jumping spiders) is the largest family of spiders; it is known throughout the world, and consists of nearly 6,000 described species belonging to 625 genera, holding 13% of all species of spiders (Foelix, 1996; Jackson et al., 2001). Salticids usually show distinct sexual dimorphism in morphology of the adults. As a result, the male-female complementarity remains unclear for many nominal species in this family. This means that more than a few synonymies are likely hidden in the current classification of the family. Furthermore, due to insufficient sampling efforts in tropical and subtropical zones, it is likely that many species are yet to be discovered. The genus Phintella Strand in Bösenberg and Strand (1906) is one of the most speciose genera in the family Salticidae, and is thought to have diversified in the Oriental and Palearctic regions. -
Odonate Exuviae Used for Roosts and Nests by Sassacus Vitis and Other Jumping Spiders (Araneae: Salticidae)
Peckhamia 142.1 Odonate exuviae used by jumping spiders 1 PECKHAMIA 142.1, 3 June 2016, 1―17 ISSN 2161―8526 (print) ISSN 1944―8120 (online) Odonate exuviae used for roosts and nests by Sassacus vitis and other jumping spiders (Araneae: Salticidae) Tim Manolis 1 1 808 El Encino Way, Sacramento, CA 95864, USA, email: [email protected] Abstract: I systematically collected dragonfly (Anisoptera) exuviae along the margins of backwater lagoons in the American River floodplain, Sacramento County, California, USA, in five years (2008-2010, 2012-13) to document and monitor secondary use of these structures by arthropods, particularly spiders. Of nearly 400 exuviae examined, 28.1% were occupied, or showed signs of occupancy (e.g., unoccupied retreats). Of these occupied exuviae, 93% contained spiders or evidence of spider occupancy, and at least 50% of these were occupied by Sassacus vitis (many unoccupied retreats were probably of that species as well). S. vitis showed a significant preference for using the exuviae of sedentary, burrowing dragonfly larvae versus those of active, clasping or sprawling larvae. I found S. vitis in exuviae as single males and females, in pairs, and using exuviae for molt retreats and nests. Thirty-four S. vitis nests in exuviae provided data on aspects of the species’ breeding biology. In addition, a number of these nests were attacked by hymenopteran egg parasitoids in the genera Idris (Platygastridae) and Gelis (Ichneumonidae). I also found three other salticid species (Sitticus palustris, Synageles occidentalis, and Peckhamia sp.) in exuviae, all guarding egg sacs. Utilization of dragonfly exuviae by Sassacus vitis and other salticids is no doubt more frequent and widespread than previously noticed and deserves further scrutiny. -
Arachnida: Araneae) of the Canadian Prairies
75 Chapter 4 Spiders (Arachnida: Araneae) of the Canadian Prairies Héctor Cárcamo Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB Jaime Pinzón Department of Renewable Resources, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton Robin Leech 10534, 139 St NW, Edmonton AB John Spence Department of Renewable Resources, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton Abstract. Spiders are the seventh most diverse order of arthropods globally and are prominent predators in all prairie habitats. In this chapter, a checklist for the spiders of the Prairie Provinces (767 recorded species and 44 possible species) is presented along with an overview of all 26 families that occur in the region. Eighteen of the species from the region are adventive. Linyphiidae is by far the dominant family, representing 39% of all species in the three provinces. Gnaphosidae and Lycosidae each represent 8% and three other families (Salticidae, Dictynidae, and Theridiidae) each account for 7%. A summary of biodiversity studies conducted in the Prairies Ecozone and from transition ecoregions is also provided. The Mixed Grassland Ecoregion has the most distinctive assemblage; Schizocosa mccooki and Zelotes lasalanus are common only in this ecoregion. Other ecoregions appear to harbour less distinctive assemblages, but most have been poorly studied. Lack of professional opportunities for spider systematists in Canada remains a major barrier to the advancement of the taxonomy and ecology of spiders. Résumé. Les aranéides forment le septième ordre le plus diversifi é d’arthropodes dans le monde; ce sont des prédateurs très présents dans tous les habitats des Prairies.