Techniques of Integration Because of the Fundamental Theorem of Calculus, We Can Integrate a Function If We Know an Antiderivative, That Is, an Indefinite Integral

Total Page:16

File Type:pdf, Size:1020Kb

Techniques of Integration Because of the Fundamental Theorem of Calculus, We Can Integrate a Function If We Know an Antiderivative, That Is, an Indefinite Integral The techniques of this chapter enable us to find the height of a rocket a minute after liftoff and to compute the escape velocity of the rocket. Techniques of Integration Because of the Fundamental Theorem of Calculus, we can integrate a function if we know an antiderivative, that is, an indefinite integral. We summarize here the most impor- tant integrals that we have learned so far. x nϩ1 1 y x n dx ෇ ϩ C ͑n Ϫ1͒ y dx ෇ ln Խ x Խ ϩ C n ϩ 1 x a x y e x dx ෇ e x ϩ C y a x dx ෇ ϩ C ln a y sin x dx ෇ Ϫcos x ϩ C y cos x dx ෇ sin x ϩ C y sec2xdx෇ tan x ϩ C y csc2xdx෇ Ϫcot x ϩ C y sec x tan x dx ෇ sec x ϩ C y csc x cot x dx ෇ Ϫcsc x ϩ C y sinh x dx ෇ cosh x ϩ C y cosh x dx ෇ sinh x ϩ C y tan x dx ෇ ln Խ sec x Խ ϩ C y cot x dx ෇ ln Խ sin x Խ ϩ C 1 1 x 1 x y dx ෇ tanϪ1ͩ ͪ ϩ C y dx ෇ sinϪ1ͩ ͪ ϩ C x 2 ϩ a 2 a a sa 2 Ϫ x 2 a In this chapter we develop techniques for using these basic integration formulas to obtain indefinite integrals of more complicated functions. We learned the most important method of integration, the Substitution Rule, in Section 5.5. The other gen- eral technique, integration by parts, is presented in Section 7.1. Then we learn methods that are special to particular classes of functions such as trigonometric func- tions and rational functions. Integration is not as straightforward as differentiation; there are no rules that absolutely guarantee obtaining an indefinite integral of a function. Therefore, in Section 7.5 we discuss a strategy for integration. |||| 7.1 Integration by Parts Every differentiation rule has a corresponding integration rule. For instance, the Substi- tution Rule for integration corresponds to the Chain Rule for differentiation. The rule that corresponds to the Product Rule for differentiation is called the rule for integration by parts. The Product Rule states that if f and t are differentiable functions, then d ͓ f ͑x͒t͑x͔͒ ෇ f ͑x͒tЈ͑x͒ ϩ t͑x͒f Ј͑x͒ dx 476 ❙❙❙❙ CHAPTER 7 TECHNIQUES OF INTEGRATION In the notation for indefinite integrals this equation becomes y ͓ f ͑x͒tЈ͑x͒ ϩ t͑x͒f Ј͑x͔͒ dx ෇ f ͑x͒t͑x͒ or y f ͑x͒tЈ͑x͒ dx ϩ y t͑x͒f Ј͑x͒ dx ෇ f ͑x͒t͑x͒ We can rearrange this equation as 1 y f ͑x͒tЈ͑x͒ dx ෇ f ͑x͒t͑x͒ Ϫ y t͑x͒f Ј͑x͒ dx Formula 1 is called the formula for integration by parts. It is perhaps easier to remem- ber in the following notation. Let u ෇ f ͑x͒ and v ෇ t͑x͒. Then the differentials are du ෇ f Ј͑x͒ dx and dv ෇ tЈ͑x͒ dx, so, by the Substitution Rule, the formula for integration by parts becomes 2 y udv ෇ uv Ϫ y v du EXAMPLE 1 Find y x sin x dx. SOLUTION USING FORMULA 1 Suppose we choose f ͑x͒ ෇ x and tЈ͑x͒ ෇ sin x. Then f Ј͑x͒ ෇ 1 and t͑x͒ ෇ Ϫcos x. (For t we can choose any antiderivative of tЈ.) Thus, using Formula 1, we have y x sin x dx ෇ f ͑x͒t͑x͒ Ϫ y t͑x͒f Ј͑x͒ dx ෇ x͑Ϫcos x͒ Ϫ y ͑Ϫcos x͒ dx ෇ Ϫx cos x ϩ y cos x dx ෇ Ϫx cos x ϩ sin x ϩ C It’s wise to check the answer by differentiating it. If we do so, we get x sin x, as expected. SOLUTION USING FORMULA 2 Let |||| It is helpful to use the pattern: u ෇ x dv ෇ sin x dx u ෇ ᮀ dv ෇ ᮀ du ෇ ᮀ v ෇ ᮀ Then du ෇ dx v ෇ Ϫcos x and so u d√ u √ √ du y x sin x dx ෇ y x sin x dx ෇ x ͑Ϫcos x͒ Ϫ y ͑Ϫcos x͒ dx ෇ Ϫx cos x ϩ y cos x dx ෇ Ϫx cos x ϩ sin x ϩ C SECTION 7.1 INTEGRATION BY PARTS ❙❙❙❙ 477 NOTE I Our aim in using integration by parts is to obtain a simpler integral than the one we started with. Thus, in Example 1 we started with x x sin x dx and expressed it in terms of the simpler integral x cos x dx. If we had chosen u ෇ sin x and dv ෇ x dx, then du ෇ cos x dx and v ෇ x 2͞2, so integration by parts gives x 2 1 y x sin x dx ෇ ͑sin x͒ Ϫ y x 2 cos x dx 2 2 Although this is true,x x 2 cos x dx is a more difficult integral than the one we started with. In general, when deciding on a choice for u and dv, we usually try to choose u ෇ f ͑x͒ to be a function that becomes simpler when differentiated (or at least not more complicated) as long as dv ෇ tЈ͑x͒ dx can be readily integrated to give v. EXAMPLE 2 Evaluate y ln x dx. SOLUTION Here we don’t have much choice for u and dv. Let u ෇ ln x dv ෇ dx 1 Then du ෇ dx v ෇ x x Integrating by parts, we get dx y ln x dx ෇ x ln x Ϫ y x x |||| It’s customary to write x 1 dx as x dx. ෇ x ln x Ϫ y dx |||| Check the answer by differentiating it. ෇ x ln x Ϫ x ϩ C Integration by parts is effective in this example because the derivative of the function f ͑x͒ ෇ ln x is simpler than f . EXAMPLE 3 Find y t 2et dt. SOLUTION Notice that t 2 becomes simpler when differentiated (whereas et is unchanged when differentiated or integrated), so we choose u ෇ t 2 dv ෇ et dt Then du ෇ 2tdt v ෇ et Integration by parts gives 2 t 2 t t 3 y t e dt ෇ t e Ϫ 2 y te dt The integral that we obtained,x tet dt , is simpler than the original integral but is still not obvious. Therefore, we use integration by parts a second time, this time with u ෇ t and 478 ❙❙❙❙ CHAPTER 7 TECHNIQUES OF INTEGRATION dv ෇ et dt. Then du ෇ dt,v ෇ et , and y tet dt ෇ tet Ϫ y et dt ෇ tet Ϫ et ϩ C Putting this in Equation 3, we get 2 t 2 t t y t e dt ෇ t e Ϫ 2 y te dt 2 t t t ෇ t e Ϫ 2͑te Ϫ e ϩ C͒ 2 t t t ෇ t e Ϫ 2te ϩ 2e ϩ C1 where C1 ෇ Ϫ2C EXAMPLE 4 Evaluate y e x sin x dx. |||| An easier method, using complex numbers, SOLUTION Neither e x nor sin x becomes simpler when differentiated, but we try choosing is given in Exercise 48 in Appendix G. u ෇ e x and dv ෇ sin x dx anyway. Then du ෇ e x dx and v ෇ Ϫcos x, so integration by parts gives 4 y e x sin x dx ෇ Ϫe x cos x ϩ y e x cos x dx The integral that we have obtained,x e x cos x dx , is no simpler than the original one, but at least it’s no more difficult. Having had success in the preceding example integrating by parts twice, we persevere and integrate by parts again. This time we use u ෇ e x and dv ෇ cos x dx. Then du ෇ e x dx,v ෇ sin x , and 5 y e x cos x dx ෇ e x sin x Ϫ y e x sin x dx At first glance, it appears as if we have accomplished nothing because we have arrived at x |||| Figure 1 illustrates Example 4 by x e sin x dx, which is where we started. However, if we put Equation 5 into Equation 4 showing the graphs of f ͑x͒ ෇ e x sin x and we get ͑ ͒ ෇ 1 x͑ Ϫ ͒ F x 2 e sin x cos x . As a visual check on our work, notice that f ͑x͒ ෇ 0 when F has x x x x a maximum or minimum. y e sin x dx ෇ Ϫe cos x ϩ e sin x Ϫ y e sin x dx 12 This can be regarded as an equation to be solved for the unknown integral. Adding x ex sin x dx to both sides, we obtain F f 2 y e x sin x dx ෇ Ϫe x cos x ϩ e x sin x _3 6 Dividing by 2 and adding the constant of integration, we get _4 x ෇ 1 x͑ Ϫ ͒ ϩ y e sin x dx 2 e sin x cos x C FIGURE 1 If we combine the formula for integration by parts with Part 2 of the Fundamental Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both sides of Formula 1 between a and b, assuming f Ј and tЈ are continuous, and using the Fundamental SECTION 7.1 INTEGRATION BY PARTS ❙❙❙❙ 479 Theorem, we obtain b ͑ ͒tЈ͑ ͒ ෇ ͑ ͒t͑ ͒ b Ϫ b t͑ ͒ Ј͑ ͒ 6 y f x x dx f x x ]a y x f x dx a a 1 Ϫ EXAMPLE 5 Calculate y tan 1xdx. 0 SOLUTION Let u ෇ tanϪ1x dv ෇ dx dx Then du ෇ v ෇ x 1 ϩ x 2 So Formula 6 gives 1 1 1 x Ϫ1 ෇ Ϫ1 Ϫ y tan xdx x tan x]0 y 2 dx 0 0 1 ϩ x 1 x ෇ ؒ Ϫ1 Ϫ ؒ Ϫ1 Ϫ 1 tan 1 0 tan 0 y 2 dx 0 1 ϩ x |||| Ϫ1 ജ ജ ␲ Since tan x 0 for x 0, the integral in ෇ Ϫ 1 x Example 5 can be interpreted as the area of the y 2 dx 4 0 1 ϩ x region shown in Figure 2.
Recommended publications
  • Conjugate Trigonometric Integrals! by R
    SOME THEOREMS ON FOURIER TRANSFORMS AND CONJUGATE TRIGONOMETRIC INTEGRALS! BY R. P. BOAS, JR. 1. Introduction. Functions whose Fourier transforms vanish for large val- ues of the argument have been studied by Paley and Wiener.f It is natural, then, to ask what properties are possessed by functions whose Fourier trans- forms vanish over a finite interval. The two classes of functions are evidently closely related, since a function whose Fourier transform vanishes on ( —A, A) is the difference of two suitably chosen functions, one of which has its Fourier transform vanishing outside (—A, A). In this paper, however, we obtain, for a function having a Fourier transform vanishing over a finite interval, a criterion which does not seem to be trivially related to known results. It is stated in terms of a transform which is closely related to the Hilbert trans- form, and which may be written in the simplest (and probably most interest- ing) case, 1 C" /(* + *) - fix - 0 (1) /*(*) = —- sin t dt. J IT J o t2 With this notation, we shall show that a necessary and sufficient condition for a function/(x) belonging to L2(—<», oo) to have a Fourier transform vanishing almost everywhere on ( — 1, 1) is that/**(x) = —/(*) almost every- where;/**^) is the result of applying the transform (1) to/*(x). The result holds also if (sin t)/t is replaced in the integrand in (1) by a certain more general function Hit). As a preliminary result, we discuss the effect of the general transform/*(x) on a trigonometric Stieltjes integral, (2) /(*) = f e^'dait), J -R where a(/) is a normalized! complex-valued function of bounded variation.
    [Show full text]
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]
  • Mathematics 136 – Calculus 2 Summary of Trigonometric Substitutions October 17 and 18, 2016
    Mathematics 136 – Calculus 2 Summary of Trigonometric Substitutions October 17 and 18, 2016 The trigonometric substitution method handles many integrals containing expressions like a2 x2, x2 + a2, x2 a2 p − p p − (possibly including expressions without the square roots!) The basis for this approach is the trigonometric identities 1 = sin2 θ + cos2 θ sec2 θ = tan2 θ +1. ⇒ from which we derive other related identities: a2 (a sin θ)2 = a2(1 sin2 θ) = √a2 cos2 θ = a cos θ p − q − (a tan θ)2 + a2 = a2(tan2 θ +1) = √a2 sec2 θ = a sec θ p q (a sec θ)2 a2 = a2(sec2 θ 1) = a2 tan2 θ = a tan θ p − p − p (Technical note: We usually assume that a > 0 and 0 <θ<π/2 here so that all the trig functions take positive values.) Hence, 1. If our integral contains √a2 x2, the substitution x = a sin θ will convert this radical to the simpler form a cos θ. − 2. If our integral contains √x2 + a2, the substitution x = a tan θ will convert this radical to the simpler form a sec θ. 3. If our integral contains √x2 a2, the substitution x = a sec θ will convert this radical to the simpler form a tan θ. − We substitute for the rest of the integral including the dx. For instance if x = a sin θ, then the dx = a cos θ dθ. If x = a tan θ, then dx = a sec2 θ dθ. If x = a sec θ, then dx = a sec θ tan θ dθ.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Integration by Parts
    3 Integration By Parts Formula ∫∫udv = uv − vdu I. Guidelines for Selecting u and dv: (There are always exceptions, but these are generally helpful.) “L-I-A-T-E” Choose ‘u’ to be the function that comes first in this list: L: Logrithmic Function I: Inverse Trig Function A: Algebraic Function T: Trig Function E: Exponential Function Example A: ∫ x3 ln x dx *Since lnx is a logarithmic function and x3 is an algebraic function, let: u = lnx (L comes before A in LIATE) dv = x3 dx 1 du = dx x x 4 v = x 3dx = ∫ 4 ∫∫x3 ln xdx = uv − vdu x 4 x 4 1 = (ln x) − dx 4 ∫ 4 x x 4 1 = (ln x) − x 3dx 4 4 ∫ x 4 1 x 4 = (ln x) − + C 4 4 4 x 4 x 4 = (ln x) − + C ANSWER 4 16 www.rit.edu/asc Page 1 of 7 Example B: ∫sin x ln(cos x) dx u = ln(cosx) (Logarithmic Function) dv = sinx dx (Trig Function [L comes before T in LIATE]) 1 du = (−sin x) dx = − tan x dx cos x v = ∫sin x dx = − cos x ∫sin x ln(cos x) dx = uv − ∫ vdu = (ln(cos x))(−cos x) − ∫ (−cos x)(− tan x)dx sin x = −cos x ln(cos x) − (cos x) dx ∫ cos x = −cos x ln(cos x) − ∫sin x dx = −cos x ln(cos x) + cos x + C ANSWER Example C: ∫sin −1 x dx *At first it appears that integration by parts does not apply, but let: u = sin −1 x (Inverse Trig Function) dv = 1 dx (Algebraic Function) 1 du = dx 1− x 2 v = ∫1dx = x ∫∫sin −1 x dx = uv − vdu 1 = (sin −1 x)(x) − x dx ∫ 2 1− x ⎛ 1 ⎞ = x sin −1 x − ⎜− ⎟ (1− x 2 ) −1/ 2 (−2x) dx ⎝ 2 ⎠∫ 1 = x sin −1 x + (1− x 2 )1/ 2 (2) + C 2 = x sin −1 x + 1− x 2 + C ANSWER www.rit.edu/asc Page 2 of 7 II.
    [Show full text]
  • Integration-By-Parts.Pdf
    Integration INTEGRATION BY PARTS Graham S McDonald A self-contained Tutorial Module for learning the technique of integration by parts ● Table of contents ● Begin Tutorial c 2003 [email protected] Table of contents 1. Theory 2. Usage 3. Exercises 4. Final solutions 5. Standard integrals 6. Tips on using solutions 7. Alternative notation Full worked solutions Section 1: Theory 3 1. Theory To differentiate a product of two functions of x, one uses the product rule: d dv du (uv) = u + v dx dx dx where u = u (x) and v = v (x) are two functions of x. A slight rearrangement of the product rule gives dv d du u = (uv) − v dx dx dx Now, integrating both sides with respect to x results in Z dv Z du u dx = uv − v dx dx dx This gives us a rule for integration, called INTEGRATION BY PARTS, that allows us to integrate many products of functions of x. We take one factor in this product to be u (this also appears on du the right-hand-side, along with dx ). The other factor is taken to dv be dx (on the right-hand-side only v appears – i.e. the other factor integrated with respect to x). Toc JJ II J I Back Section 2: Usage 4 2. Usage We highlight here four different types of products for which integration by parts can be used (as well as which factor to label u and which one dv to label dx ). These are: sin bx (i) R xn· or dx (ii) R xn·eaxdx cos bx ↑ ↑ ↑ ↑ dv dv u dx u dx sin bx (iii) R xr· ln (ax) dx (iv) R eax · or dx cos bx ↑ ↑ ↑ ↑ dv dv dx u u dx where a, b and r are given constants and n is a positive integer.
    [Show full text]
  • Log-Trigonometric Integrals and Elliptic Functions
    Log-trigonometric integrals and elliptic functions Martin Nicholson A class of log-trigonometric integrals are evaluated in terms of elliptic functions. I. INTRODUCTION The following integrals were calculated in [7] π=2 Z a ln x2 + ln2(2e−a cos x) dx = π ln ; (1) eb − 1 0 π=2 Z π 1 1 ln x2 + ln2(2e−a cos x) cos 2x dx = 1 − − eb + ; (2) 2 a eb − 1 0 π=2 Z x sin 2x π 1 eb dx = + eb − ; (3) x2 + ln2(2e−a cos x) 4 a2 (eb − 1)2 0 π=2 γ Z 1 + e2ix π e(γ+1)a dx = − + π H(ln 2 − a); (4) ix − a + ln (2 cos x) a ea − 1 −π=2 where a 2 R, b = minfa; ln 2g, and H is unit step function. These are log-trigonometric integrals of the type whose study was initiated in the series of papers [1{4, 6]. The author of the paper [7] also noted that integral (1) can be used to obtain integrals that can be evaluated in terms of logarithm of Dedekind eta function. However the resulting integrals contained special functions of complex argument. In this paper we modify this approach to obtain integrals of elementary functions of real argument that are evaluated in terms of infinite products or Lambert series. These infinite products and Lambert series can be expressed in terms of elliptic integrals and allow one to obtain closed form evaluation of certain log-trigonometric integrals at particular values of the parameter. In the following we will use standard notations from the theory of elliptic functions.
    [Show full text]
  • U-Substitution and Integration by Parts
    U-Substitution and Integration by Parts U-Substitution The general form of an integrand which requires U-Substitution is R f(g(x))g0(x)dx. This can be rewritten as R f(u)du. A big hint to use U-Substitution is that there is a composition of functions and there is some relation between two functions involved by way of derivatives. Examplep 1 R 3x + 2dx 1 R p 1 Let u = 3x + 2. Then du = 3dx and thus dx = 3 du. We then consider u( 3 )du. 1 R p 1 u3=2 2 3=2 3 udu = 3 3=2 + C = 9 u + C Next we must make sure to have everything in terms of x like we had in the beginning of the problem. From our previous choice of u, we know u = 3x + 2. 2 3=2 So our final answer is 9 (3x + 2) + C. For indefinite integrals, always make sure to switch back to the variable you started with. Example 2 R 2 3 4 1 x cos(x + 3)dx 4 3 1 3 Let u = x + 3. So du = 4x dx. Then 4 du = x dx From here we have two options. We can either switch back to x later and plug in our bounds after or we can change our integral bounds along with our U-Substitution and solve. Option 1: R b 1 If we do not change our bounds, we have a 4 cos(u)du. Note that we use a and b as placeholders for now.
    [Show full text]
  • Review of Differentiation and Integration Rules from Calculus I and II for Ordinary Differential Equations, 3301 General Notatio
    Review of di®erentiation and integration rules from Calculus I and II for Ordinary Di®erential Equations, 3301 General Notation: a; b; m; n; C are non-speci¯c constants, independent of variables e; ¼ are special constants e = 2:71828 ¢ ¢ ¢, ¼ = 3:14159 ¢ ¢ ¢ f; g; u; v; F are functions f n(x) usually means [f(x)]n, but f ¡1(x) usually means inverse function of f a(x + y) means a times x + y, but f(x + y) means f evaluated at x + y fg means function f times function g, but f(g) means output of g is input of f t; x; y are variables, typically t is used for time and x for position, y is position or output 0;00 are Newton notations for ¯rst and second derivatives. d d2 d d2 Leibnitz notations for ¯rst and second derivatives are and or and dx dx2 dt dt2 Di®erential of x is shown by dx or ¢x or h f(x + ¢x) ¡ f(x) f 0(x) = lim , derivative of f shows the slope of the tangent line, rise ¢x!0 ¢x over run, for the function y = f(x) at x General di®erentiation rules: dt dx 1a- Derivative of a variable with respect to itself is 1. = 1 or = 1. dt dx 1b- Derivative of a constant is zero. 2- Linearity rule (af + bg)0 = af 0 + bg0 3- Product rule (fg)0 = f 0g + fg0 µ ¶ f 0 f 0g ¡ fg0 4- Quotient rule = g g2 5- Power rule (f n)0 = nf n¡1f 0 6- Chain rule (f(g(u)))0 = f 0(g(u))g0(u)u0 7- Logarithmic rule (f)0 = [eln f ]0 8- PPQ rule (f ngm)0 = f n¡1gm¡1(nf 0g + mfg0), combines power, product and quotient 9- PC rule (f n(g))0 = nf n¡1(g)f 0(g)g0, combines power and chain rules 10- Golden rule: Last algebra action speci¯es the ¯rst di®erentiation rule to
    [Show full text]
  • Integration by Parts
    Integration by parts mc-TY-parts-2009-1 A special rule, integration by parts, is available for integrating products of two functions. This unit derives and illustrates this rule with a number of examples. In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. After reading this text, and/or viewing the video tutorial on this topic, you should be able to: • state the formula for integration by parts • integrate products of functions using integration by parts Contents 1. Introduction 2 2. Derivation of the formula for integration by parts dv du u dx = uv v dx 2 Z dx − Z dx 3. Using the formula for integration by parts 5 www.mathcentre.ac.uk 1 c mathcentre 2009 1. Introduction Functions often arise as products of other functions, and we may be required to integrate these products. For example, we may be asked to determine x cos x dx . Z Here, the integrand is the product of the functions x and cos x. A rule exists for integrating products of functions and in the following section we will derive it. 2. Derivation of the formula for integration by parts We already know how to differentiate a product: if y = u v then dy d(uv) dv du = = u + v . dx dx dx dx Rearranging this rule: dv d(uv) du u = v . dx dx − dx Now integrate both sides: dv d(uv) du u dx = dx v dx . Z dx Z dx − Z dx The first term on the right simplifies since we are simply integrating what has been differentiated.
    [Show full text]
  • Nonlocal Vector Calculus by Fahad Hamoud Almutairi B.E., Kuwait University, 2013 a REPORT Submitted in Partial Fulfillment of Th
    Nonlocal Vector Calculus by Fahad Hamoud Almutairi B.E., Kuwait University, 2013 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Mathematics College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Approved by: Major Professor Bacim Alali Abstract Nonlocal vector calculus, introduced in4;6, generalizes differential operators' calculus to nonlocal calculus of integral operators. Nonlocal vector calculus has been applied to many fields including peridynamics, nonlocal diffusion, and image analysis1{3;5;7. In this report, we present a vector calculus for nonlocal operators such as a nonlocal divergence, a non- local gradient, and a nonlocal Laplacian. In Chapter 1, we review the local (differential) divergence, gradient, and Laplacian operators. In addition, we discuss their adjoints, the divergence theorem, Green's identities, and integration by parts. In Chapter 2, we define nonlocal analogues of the divergence and gradient operators, and derive the corresponding adjoint operators. In Chapter 3, we present a nonlocal divergence theorem, nonlocal Green's identities, and integration by parts for nonlocal operators. In Chapter 4, we establish a con- nection between the local and nonlocal operators. In particular, we show that, for specific integral kernels, the nonlocal operators converge to their local counterparts in the limit of vanishing nonlocality. Table of Contents List of Figures . iv Introduction . .1 1 Local Operators . .2 1.1 The divergence theorem . .3 1.2 Adjoints for the divergence and the gradient operators . .3 1.3 Integration by parts formula . .4 1.4 Green's identities for local operators . .5 2 Nonlocal Operators .
    [Show full text]