Some Series and Integrals Involving the Riemann Zeta Function, Binomial Coefficients and the Harmonic Numbers
Total Page:16
File Type:pdf, Size:1020Kb
Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers Volume I Donal F. Connon 18 February 2008 Abstract In this series of seven papers, predominantly by means of elementary analysis, we establish a number of identities related to the Riemann zeta function, including the following: ∞ 1 n bb⎛⎞n p()cos2xkxdxpxdx= () ∑∑n ∫∫⎜⎟ nk==002 aa⎝⎠k ∞ 1 n bb⎛⎞n p()sin2xkxdxpxxdx= ()cot ∑∑n ∫∫⎜⎟ nk==112 aa⎝⎠k ∞ bb ∑∫∫p()cosxn x cos nx dx= p () x dx n=0 aa ∞ bb ∑∫∫p()cosxn x sin nx dx= p ()cot x x dx n=0 aa ∞ n ⎛⎞n xk 1 ⎛⎞xt tLin ∑∑⎜⎟s = s ⎜⎟ nk==11⎝⎠k kt11− ⎝⎠− t 11∞ ∞ 1(1)n ⎛⎞n − k+1 (3) ()HH(1) 2 (2) ς a = ∑ n { nn+ } = ∑∑n ⎜⎟ 2 22n=1 n nk==01nk2 ⎝⎠k ∞ ∞ n k +1 1 ⎧⎫113 1 1(1)⎛⎞n − (4) HHHH(1) (1) (2) (3) ς a = ∑ n ⎨⎬()nnnn++= ∑∑n ⎜⎟ 3 n=1 n2 ⎩⎭62 3nk==11nk2 ⎝⎠k ∞ 1 42 2 ς (5) = HHHHHHH(1) ++++6836(1) (2) (1) (3) (2) (4) a ∑ n {()()nnnnnnn() } n=1 n2 where p()x is a suitably behaved continuously differentiable function and ς a (s ) is the alternating Riemann zeta function. Whilst this paper is mainly expository, some of the formulae reported in it are believed to be new, and the paper may also be of interest specifically due to the fact that most of the various identities have been derived by elementary methods. CONTENTS OF VOLUMES I TO VI: Volume/page SECTION: 1. Introduction I/11 2. An integral involving cot x I/17 The Riemann-Lebesgue lemma I/21 3. Results obtained from the basic identities I/24 Some stuff on Stirling numbers of the first kind I/69 Euler, Landen and Spence polylogarithm identities I/86 An application of the binomial theorem I/117 Summary of harmonic number series identities I/154 4. Elementary proofs of the Flajolet and Sedgewick identities II(a)/5 Some identities derived from the Hasse/Sondow equations II(a)/13 A connection with the gamma, beta and psi functions II(a)/26 An application of the digamma function to the derivation of Euler sums II(a)/31 Gauss hypergeometric summation II(a)/48 Stirling numbers revisited II(a)/51 Logarithmic series for the digamma and gamma functions II(a)/64 An alternative proof of Alexeiewsky’s theorem II(a)/74 A different view of the crime scene II(a)/91 An easy proof of Lerch’s identity II(a)/109 Stirling’s approximation for logΓ (u ) II(a)/114 The Gosper/Vardi functional equation II(a)/125 A logarithmic series for log A II(a)/137 Asymptotic formula for logGu (+ 1) II(a)/139 Gosper’s integral II(a)/144 2 The vanishing integral II(a)/147 Another trip to the land of G II(a)/165 x Evaluation of ∫ππuudun cot II(a)/169 0 An observation by Glasser II(a)/188 An introduction to Stieltjes constants II(b)/5 A possible connection with the Fresnel integral II(b)/16 Evaluation of some Stieltjes constants II(b)/21 A connection with logarithmic integrals II(b)/67 A hitchhiker’s guide to the Riemann hypothesis II(b)/84 A multitude of identities and theorems II(b)/101 Various identities involving polylogarithms III/5 Sondow’s formula for γ III/42 Evaluation of various logarithmic integrals III/61 Some integrals involving polylogarithms III/66 A little bit of log(π / 2) III/88 Alternative derivations of the Glaisher-Kinkelin constants III/108 Some identities involving harmonic numbers IV/5 Some integrals involving logΓ (x ) IV/77 Another determination of logG (1/ 2) IV/88 An application of Kummer’s Fourier series for logΓ (1+ x ) IV/92 Some Fourier series connections IV/109 Further appearances of the Riemann functional equation IV/124 More identities involving harmonic numbers and polylogarithms IV/133 5. An application of the Bernoulli polynomials V/5 3 6. Trigonometric integral identities involving: - Riemann zeta function V/7 - Barnes double gamma function V/31 - Sine and cosine integrals V/45 - Yet another derivation of Gosper’s integral V/108 7. Some applications of the Riemann-Lebesgue lemma V/141 8. Some miscellaneous results V/145 APPENDICES (Volume VI): A. Some properties of the Bernoulli numbers and the Bernoulli polynomials B. A well-known integral C. Euler’s reflection formula for the gamma function and related matters π 2 ∞ 1 D. A very elementary proof of = ∑ 2 8(21)n=0 n + E. Some aspects of Euler’s constant γ and the gamma function F. Elementary aspects of Riemann’s functional equation for the zeta function ACKNOWLEDGEMENTS REFERENCES 4 GUIDE TO LOCATION OF FORMULAE Contains formulae numbered: From To VOLUME I (1.1) (3.266) VOLUME II(a) (4.1.1) (4.3.184) VOLUME II(b) (4.3.200) (4.4.44l) VOLUME III (4.4.45) (4.4.117t) VOLUME IV (4.4.118) (4.4.252b) VOLUME V (5.1) (8.62) VOLUME VI Appendices, Acknowledgements and References The formulae in Appendix A in Volume VI are prefixed by the letter A, and so on for the other appendices. 5 Some of the identities considered in the remaining six volumes are summarised below: Volume II(a) ∞ 1 42 2 ς (5) = HHHHHHH(1) ++++6836(1) (2) (1) (3) (2) (4) a ∑ n {()()nnnnnnn() } n=1 n2 3 ∞∞(3) (1) (2) ∞⎡H (1) ⎤ HHHkkk⎣ k ⎦ 24ς (5)=+ 2∑∑22 3 + ∑ 2 kk==11kk k = 1 k ∞ k 1 ⎛⎞k j ψ (uu )=−+∑∑⎜⎟ ( 1) log(j ) kj==00k +1 ⎝⎠j ∞ n 11⎛⎞n k 1 logΓ= (uu ) ∑∑⎜⎟( − 1) ( +k )log(u ++−+k )u log(2π ) nk==00n +12⎝⎠k 2 3 ∞−⎡⎤(2k )!k 1 1ππ 6−Γ 2 (1/ 4) ∑∑⎢⎥22k = 4 kj==10⎣⎦2(!)kj 2+Γ 1 24 (3/4) ∞ n 1 ⎛⎞n k 22 2logGu (1+=− )∑∑⎜⎟ ( − 1) (uk + ) log( uku ++ ) 2 log Γ ( u ) + 2 uu − nk==00n +1 ⎝⎠k 11 1 +−−−−2ς ′ ( 1) (uu 1)(3 + 2) 12 2 1(x ς 3) uuduxlog sinπς=− [′′ ( 2, ) +−−− ς ( 2,1 xxx )] 2 [ ς ′′ ( − 1, ) −−−+ ς ( 1,1 x )] ∫ 2 220 π 1 13(3)ς logΓ+ (xdx 1) =− log(2π ) + ∫ 3 2 0 24 8π ∂ where ςς′(,sx )= (, sx ), Gx() and Γ ()x are the Barnes double and triple gamma ∂s 3 functions. Volume II(b) ∞ n 11⎛⎞n kp+1 γ p ()uuk=− ⎜⎟ (1)log(− + ) ∑∑k pn++11nk==00⎝⎠ 6 x (1)− p+1 γςς()udu=− [(1)pp++ (0,)x (1) (0)] ∫ p p +1 1 ⎛⎞11 2 1⎡ ⎛⎞1⎤ γγ11⎜⎟=−[2 15log 2 − 6 γπγπ log 2] −++−Γ⎢ 4log 2 3log 4log ⎜⎟⎥ ⎝⎠42 2⎣ ⎝⎠4⎦ ∞ ⎡⎤1 1 log log(1/t ) −=dtγγ() u+ 2 γ () u+ γ log u+ log2 u ∫ ⎢⎥u 01 1 ⎣⎦1− tt log(1/ t ) t ∞ n 11⎛⎞n k 221212 ∑∑⎜⎟(−+=−−++ 1)kk log ( 1)γ1 log(2πγ ) πlog (2 π ) nk==00n +12⎝⎠k 242 ∞ n ks∞ −−+1(1)yu n ⎛⎞n xxtuextxt⎛ ⎞ tdusy⎜⎟ s ==2 Φ⎜,,+ 1 ⎟ ∑∑k (ky+−Γ ) (1 t ) ( s ) ∫ ⎡⎤−u (1− t ) (1 − t ) nk==11⎝⎠ 0 11−+()xe t ⎝ ⎠ ⎣⎦ where γ p ()u is the Stieltjes constant and Φ(zsu , , ) is the Hurwitz-Lerch zeta function. Volume III ∞ 1 n ⎛⎞n xk Lis+1() x = ns⎜⎟ ∑∑k nk==11nk2 ⎝⎠ ∞ 1 n ⎛⎞n xk (1)k logx Li () x ( s 1) Li () x ∑∑2 ⎜⎟−=s ss++12 −+ nk==11nk⎝⎠k ∞ nkn ks+1 1 s wxx⎛⎞n (1)−− (1) logtLip−1 [ w (1− xt )] = dt ∑∑ps⎜⎟ ∫ nk==11nks⎝⎠k Γ+(1)0 1 − xt ∞ 1(1)n ⎛⎞n − k ∞ (1)− k = ∑∑ns+1 ⎜⎟ ∑ s nk==002()⎝⎠k kx+ k =0 ()kx+ xx∞ 1 n ⎛⎞n k log x (1)− k = Li() x+ Li () x ∑∑⎜⎟ s−1 ss−1 sn−+11nk==00⎝⎠k (1) k + s −1 ⎛⎞⎛⎞1+α β ΓΓ 1 ttαβ−−11−+∞ 1 n ⎛⎞n kα ⎜⎟⎜⎟22 dt =−=(1)logk log ⎝⎠⎝⎠ ∫ ∑∑n+1 ⎜⎟ 0 (1++tt ) lognk==00 2 ⎝⎠k kβ ⎛⎞⎛⎞1+ β α ΓΓ⎜⎟⎜⎟ ⎝⎠⎝⎠22 7 ∞ wxnksn ⎛⎞n (1)− −1 1 logs−2vwxv log[ 1−+ (1 )] = dv ∑∑⎜⎟ s−1 ∫ nk==00nkwsxv++Γ−+1(1)(1)1⎝⎠k 0 1 ∞ n+1 n ⎪⎪⎧⎫Lip [(1− y ) t] dy t ⎛⎞n tk−=−+( 1)k +1 log(1 ) ∫ ⎨⎬∑∑p ⎜⎟ o ⎩⎭⎪⎪1log(1)−+yynnk==10⎝⎠k where Lis ( x ) is the polylogarithm function. Volume IV ∞ HLixLiy(1) x ()− () nssxn = dy ∑ s ∫ n=1 nxy0 − ∞ (3) H n 2471 (2)log 2 (3)log 2Li (1/ 2) log 2 ∑ n =−ςς +−4 n=1 n28 6 ∞ 1 n ⎛⎞n uexkun−−1 log udu=−(1)nj−− Γ() j ()logx njk ∫ x ∑ ⎜⎟ 0 k j=0 ⎝⎠j ∞ 12n ⎛⎞n H (2) 5 k =+−(2) (4)2 (3) (6) ∑∑n+14⎜⎟ ς ςς ς nk==1121⎝⎠k k 2 ∞ 111n ⎛⎞n H (3) k =+2 (3) (6) ∑∑n+13⎜⎟ ς ς nk==11222⎝⎠k k 11∞ n ⎛⎞n (1)− k H (2) 429 k +1 2 (3) (6) (2) (4) ∑∑⎜⎟ 3 =−+ς ςςς 31nk==00nk++⎝⎠k (1)312 1 1 log2 (1−−−xux ) log[ 1 (1 )] dx=− Li() u ∫ 4 210 − x ∞ lognn cos(π / 2) 1 1 ′ ∑ 2 = []log(2πγ )+−+ 1 ς() − 1 n=1 ()π n 48 4 Volume V 1 ()2π 21n+ 2 ςπ(2nB+=− 1) ( 1)n+1 (x )cot(x )dx ∫ 21n+ (2n + 1)! 0 8 1 bb∞ ∫∫p()xdx= ∑ px ()cosα nxdx 2 aan=0 1 bb∞ ∫∫p(x )cot(αα x / 2) dx= ∑ p ( x )sin nx dx 2 aan=0 π 8 111⎡ ⎤ π ⎡⎤⎡⎤ ⎛⎞ 2 ∫ xxdxcot=−+−+ log⎣⎦⎣⎦ 2 2 1 2G ⎢ 2ς ⎜⎟ 2, −+ 2() 2 1 π ⎥ 0 16 8 64⎣ ⎝⎠ 8 ⎦ ∞ Ci() nπ ⎡⎤55 =+−−ςγ(4) log π ς′ (4) ∑ 4 ⎢⎥ n=1 n ⎣⎦32 πς2 ∞ (1)(2)nn− = ∑ n 240n=0 (nn++ 1)( 2)( n + 3)2 ∞ HH(1) (2) 11 179 1 nn 23log 2 (3) log 2 ∑ n =−−πς n=1 26 203 π G 1 ∞ 1 ⎛2n⎞ 2log =+ ⎜ ⎟ ∑ 3n 2 ⎜ ⎟ 8 2 2 n=0 n + )12(2 ⎝ n ⎠ where p()x is a suitably behaved continuously differentiable function and Ci() x is the cosine integral.