The Hyperboloid Model of Hyperbolic Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs. Grieser Name: Date
Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs. Grieser Name: ________________________________________ Date: ______________ Block: ________ Identifying Pairs of Lines and Angles Lines that intersect are coplanar Lines that do not intersect o are parallel (coplanar) OR o are skew (not coplanar) In the figure, name: o intersecting lines:___________ o parallel lines:_______________ o skew lines:________________ o parallel planes:_____________ Example: Think of each segment in the figure as part of a line. Find: Line(s) parallel to CD and containing point A _________ Line(s) skew to and containing point A _________ Line(s) perpendicular to and containing point A _________ Plane(s) parallel to plane EFG and containing point A _________ Parallel and Perpendicular Lines If two lines are in the same plane, then they are either parallel or intersect a point. There exist how many lines through a point not on a line? __________ Only __________ of them is parallel to the line. Parallel Postulate If there is a line and a point not on a line, then there is exactly one line through the point parallel to the given line. Perpendicular Postulate If there is a line and a point not on a line, then there is exactly one line through the point parallel to the given line. Angles and Transversals Interior angles are on the INSIDE of the two lines Exterior angles are on the OUTSIDE of the two lines Alternate angles are on EITHER SIDE of the transversal Consecutive angles are on the SAME SIDE of the transversal Corresponding angles are in the same position on each of the two lines Alternate interior angles lie on either side of the transversal inside the two lines Alternate exterior angles lie on either side of the transversal outside the two lines Consecutive interior angles lie on the same side of the transversal inside the two lines (same side interior) Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs. -
Proofs with Perpendicular Lines
3.4 Proofs with Perpendicular Lines EEssentialssential QQuestionuestion What conjectures can you make about perpendicular lines? Writing Conjectures Work with a partner. Fold a piece of paper D in half twice. Label points on the two creases, as shown. a. Write a conjecture about AB— and CD — . Justify your conjecture. b. Write a conjecture about AO— and OB — . AOB Justify your conjecture. C Exploring a Segment Bisector Work with a partner. Fold and crease a piece A of paper, as shown. Label the ends of the crease as A and B. a. Fold the paper again so that point A coincides with point B. Crease the paper on that fold. b. Unfold the paper and examine the four angles formed by the two creases. What can you conclude about the four angles? B Writing a Conjecture CONSTRUCTING Work with a partner. VIABLE a. Draw AB — , as shown. A ARGUMENTS b. Draw an arc with center A on each To be prof cient in math, side of AB — . Using the same compass you need to make setting, draw an arc with center B conjectures and build a on each side of AB— . Label the C O D logical progression of intersections of the arcs C and D. statements to explore the c. Draw CD — . Label its intersection truth of your conjectures. — with AB as O. Write a conjecture B about the resulting diagram. Justify your conjecture. CCommunicateommunicate YourYour AnswerAnswer 4. What conjectures can you make about perpendicular lines? 5. In Exploration 3, f nd AO and OB when AB = 4 units. -
Point of Concurrency the Three Perpendicular Bisectors of a Triangle Intersect at a Single Point
3.1 Special Segments and Centers of Classifications of Triangles: Triangles By Side: 1. Equilateral: A triangle with three I CAN... congruent sides. Define and recognize perpendicular bisectors, angle bisectors, medians, 2. Isosceles: A triangle with at least and altitudes. two congruent sides. 3. Scalene: A triangle with three sides Define and recognize points of having different lengths. (no sides are concurrency. congruent) Jul 249:36 AM Jul 249:36 AM Classifications of Triangles: Special Segments and Centers in Triangles By angle A Perpendicular Bisector is a segment or line 1. Acute: A triangle with three acute that passes through the midpoint of a side and angles. is perpendicular to that side. 2. Obtuse: A triangle with one obtuse angle. 3. Right: A triangle with one right angle 4. Equiangular: A triangle with three congruent angles Jul 249:36 AM Jul 249:36 AM Point of Concurrency The three perpendicular bisectors of a triangle intersect at a single point. Two lines intersect at a point. The point of When three or more lines intersect at the concurrency of the same point, it is called a "Point of perpendicular Concurrency." bisectors is called the circumcenter. Jul 249:36 AM Jul 249:36 AM 1 Circumcenter Properties An angle bisector is a segment that divides 1. The circumcenter is an angle into two congruent angles. the center of the circumscribed circle. BD is an angle bisector. 2. The circumcenter is equidistant to each of the triangles vertices. m∠ABD= m∠DBC Jul 249:36 AM Jul 249:36 AM The three angle bisectors of a triangle Incenter properties intersect at a single point. -
Lesson 3: Rectangles Inscribed in Circles
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M5 GEOMETRY Lesson 3: Rectangles Inscribed in Circles Student Outcomes . Inscribe a rectangle in a circle. Understand the symmetries of inscribed rectangles across a diameter. Lesson Notes Have students use a compass and straightedge to locate the center of the circle provided. If necessary, remind students of their work in Module 1 on constructing a perpendicular to a segment and of their work in Lesson 1 in this module on Thales’ theorem. Standards addressed with this lesson are G-C.A.2 and G-C.A.3. Students should be made aware that figures are not drawn to scale. Classwork Scaffolding: Opening Exercise (9 minutes) Display steps to construct a perpendicular line at a point. Students follow the steps provided and use a compass and straightedge to find the center of a circle. This exercise reminds students about constructions previously . Draw a segment through the studied that are needed in this lesson and later in this module. point, and, using a compass, mark a point equidistant on Opening Exercise each side of the point. Using only a compass and straightedge, find the location of the center of the circle below. Label the endpoints of the Follow the steps provided. segment 퐴 and 퐵. Draw chord 푨푩̅̅̅̅. Draw circle 퐴 with center 퐴 . Construct a chord perpendicular to 푨푩̅̅̅̅ at and radius ̅퐴퐵̅̅̅. endpoint 푩. Draw circle 퐵 with center 퐵 . Mark the point of intersection of the perpendicular chord and the circle as point and radius ̅퐵퐴̅̅̅. 푪. Label the points of intersection . -
Regents Exam Questions G.GPE.A.2: Locus 1 Name: ______
Regents Exam Questions G.GPE.A.2: Locus 1 Name: ________________________ www.jmap.org G.GPE.A.2: Locus 1 1 If point P lies on line , which diagram represents 3 The locus of points equidistant from two sides of the locus of points 3 centimeters from point P? an acute scalene triangle is 1) an angle bisector 2) an altitude 3) a median 4) the third side 1) 4 Chantrice is pulling a wagon along a smooth, horizontal street. The path of the center of one of the wagon wheels is best described as 1) a circle 2) 2) a line perpendicular to the road 3) a line parallel to the road 4) two parallel lines 3) 5 Which equation represents the locus of points 4 units from the origin? 1) x = 4 2 2 4) 2) x + y = 4 3) x + y = 16 4) x 2 + y 2 = 16 2 In the accompanying diagram, line 1 is parallel to line 2 . 6 Which equation represents the locus of all points 5 units below the x-axis? 1) x = −5 2) x = 5 3) y = −5 4) y = 5 Which term describes the locus of all points that are equidistant from line 1 and line 2 ? 1) line 2) circle 3) point 4) rectangle 1 Regents Exam Questions G.GPE.A.2: Locus 1 Name: ________________________ www.jmap.org 7 The locus of points equidistant from the points 9 Dan is sketching a map of the location of his house (4,−5) and (4,7) is the line whose equation is and his friend Matthew's house on a set of 1) y = 1 coordinate axes. -
Hyperbolic Geometry
Hyperbolic Geometry David Gu Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University [email protected] September 12, 2020 David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 1 / 65 Uniformization Figure: Closed surface uniformization. David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 2 / 65 Hyperbolic Structure Fundamental Group Suppose (S; g) is a closed high genus surface g > 1. The fundamental group is π1(S; q), represented as −1 −1 −1 −1 π1(S; q) = a1; b1; a2; b2; ; ag ; bg a1b1a b ag bg a b : h ··· j 1 1 ··· g g i Universal Covering Space universal covering space of S is S~, the projection map is p : S~ S.A ! deck transformation is an automorphism of S~, ' : S~ S~, p ' = '. All the deck transformations form the Deck transformation! group◦ DeckS~. ' Deck(S~), choose a pointq ~ S~, andγ ~ S~ connectsq ~ and '(~q). The 2 2 ⊂ projection γ = p(~γ) is a loop on S, then we obtain an isomorphism: Deck(S~) π1(S; q);' [γ] ! 7! David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 3 / 65 Hyperbolic Structure Uniformization The uniformization metric is ¯g = e2ug, such that the K¯ 1 everywhere. ≡ − 2 Then (S~; ¯g) can be isometrically embedded on the hyperbolic plane H . The On the hyperbolic plane, all the Deck transformations are isometric transformations, Deck(S~) becomes the so-called Fuchsian group, −1 −1 −1 −1 Fuchs(S) = α1; β1; α2; β2; ; αg ; βg α1β1α β αg βg α β : h ··· j 1 1 ··· g g i The Fuchsian group generators are global conformal invariants, and form the coordinates in Teichm¨ullerspace. -
Parallel Lines and Transversals
5.5 Parallel Lines and Transversals How can you use STATES properties of parallel lines to solve real-life problems? STANDARDS MA.8.G.2.2 1 ACTIVITY: A Property of Parallel Lines Work with a partner. ● Talk about what it means for two lines 12 1 cm 56789 to be parallel. Decide on a strategy for 1234 drawing two parallel lines. 01 91 8 9 9 9 9 10 11 12 13 10 10 10 10 ● Use your strategy to carefully draw 7 67 two lines that are parallel. 14 15 5 16 17 18 19 20 3421 22 23 2 24 25 26 1 ● Now, draw a third line 27 28 in. parallel that intersects the two 29 30 lines parallel lines. This line is called a transversal. 2 1 3 4 6 ● The two parallel lines and 5 7 8 the transversal form eight angles. Which of these angles have equal measures? transversal Explain your reasoning. 2 ACTIVITY: Creating Parallel Lines Work with a partner. a. If you were building the house in the photograph, how could you make sure that the studs are parallel to each other? b. Identify sets of parallel lines and transversals in the Studs photograph. 212 Chapter 5 Angles and Similarity 3 ACTIVITY: Indirect Measurement Work with a partner. F a. Use the fact that two rays from the Sun are parallel to explain why △ABC and △DEF are similar. b. Explain how to use similar triangles to fi nd the height of the fl agpole. x ft Sun’s ray C Sun’s ray 5 ft AB3 ft DE36 ft 4. -
Cross-Ratio Dynamics on Ideal Polygons
Cross-ratio dynamics on ideal polygons Maxim Arnold∗ Dmitry Fuchsy Ivan Izmestievz Serge Tabachnikovx Abstract Two ideal polygons, (p1; : : : ; pn) and (q1; : : : ; qn), in the hyperbolic plane or in hyperbolic space are said to be α-related if the cross-ratio [pi; pi+1; qi; qi+1] = α for all i (the vertices lie on the projective line, real or complex, respectively). For example, if α = 1, the respec- − tive sides of the two polygons are orthogonal. This relation extends to twisted ideal polygons, that is, polygons with monodromy, and it descends to the moduli space of M¨obius-equivalent polygons. We prove that this relation, which is, generically, a 2-2 map, is completely integrable in the sense of Liouville. We describe integrals and invari- ant Poisson structures, and show that these relations, with different values of the constants α, commute, in an appropriate sense. We inves- tigate the case of small-gons, describe the exceptional ideal polygons, that possess infinitely many α-related polygons, and study the ideal polygons that are α-related to themselves (with a cyclic shift of the indices). Contents 1 Introduction 3 ∗Department of Mathematics, University of Texas, 800 West Campbell Road, Richard- son, TX 75080; [email protected] yDepartment of Mathematics, University of California, Davis, CA 95616; [email protected] zDepartment of Mathematics, University of Fribourg, Chemin du Mus´ee 23, CH-1700 Fribourg; [email protected] xDepartment of Mathematics, Pennsylvania State University, University Park, PA 16802; [email protected] 1 1.1 Motivation: iterations of evolutes . .3 1.2 Plan of the paper and main results . -
Downloaded from Bookstore.Ams.Org 30-60-90 Triangle, 190, 233 36-72
Index 30-60-90 triangle, 190, 233 intersects interior of a side, 144 36-72-72 triangle, 226 to the base of an isosceles triangle, 145 360 theorem, 96, 97 to the hypotenuse, 144 45-45-90 triangle, 190, 233 to the longest side, 144 60-60-60 triangle, 189 Amtrak model, 29 and (logical conjunction), 385 AA congruence theorem for asymptotic angle, 83 triangles, 353 acute, 88 AA similarity theorem, 216 included between two sides, 104 AAA congruence theorem in hyperbolic inscribed in a semicircle, 257 geometry, 338 inscribed in an arc, 257 AAA construction theorem, 191 obtuse, 88 AAASA congruence, 197, 354 of a polygon, 156 AAS congruence theorem, 119 of a triangle, 103 AASAS congruence, 179 of an asymptotic triangle, 351 ABCD property of rigid motions, 441 on a side of a line, 149 absolute value, 434 opposite a side, 104 acute angle, 88 proper, 84 acute triangle, 105 right, 88 adapted coordinate function, 72 straight, 84 adjacency lemma, 98 zero, 84 adjacent angles, 90, 91 angle addition theorem, 90 adjacent edges of a polygon, 156 angle bisector, 100, 147 adjacent interior angle, 113 angle bisector concurrence theorem, 268 admissible decomposition, 201 angle bisector proportion theorem, 219 algebraic number, 317 angle bisector theorem, 147 all-or-nothing theorem, 333 converse, 149 alternate interior angles, 150 angle construction theorem, 88 alternate interior angles postulate, 323 angle criterion for convexity, 160 alternate interior angles theorem, 150 angle measure, 54, 85 converse, 185, 323 between two lines, 357 altitude concurrence theorem, -
Triangles and Transversals Triangles
Triangles and Transversals Triangles A three-sided polygon. Symbol → ▵ You name it ▵ ABC. Total Angle Sum of a Triangle The interior angles of a triangle add up to 180 degrees. Symbol = Acute Triangle A triangle that contains only angles that are less than 90 degrees. Obtuse Triangle A triangle with one angle greater than 90 degrees (an obtuse angle). Right Triangle A triangle with one right angle (90 degrees). Vertex The common endpoint of two or more rays or line segments. Complementary Angles Two angles whose measures have a sum of 90 degrees. Supplementary Angles Two angles whose measures have a sum of 180 degrees. Perpendicular Lines Lines that intersect to form a right angle (90 degrees). Symbol = Parallel Lines Lines that never intersect. Arrows are used to indicate lines are parallel. Symbol = || Transversal Lines A line that cuts across two or more (usually parallel) lines. Intersect The point where two lines meet or cross. Vertical Angles Angles opposite one another at the intersection of two lines. Vertical angles have the same angle measurements. Interior Angles An angle inside a shape. Exterior Angles Angles outside of a shape. Alternate Interior Angles The pairs of angles on opposite sides of the transversal but inside the two lines. Alternate Exterior Angles Each pair of these angles are outside the lines, and on opposite sides of the transversal. Corresponding Angles The angles in matching corners. Reflexive Angles An angle whose measure is greater than 180 degrees and less that 360 degrees. Straight Angles An angle that measures exactly 180 degrees. Adjacent Angles Angles with common side and common vertex without overlapping. -
Geometry Unit 4 Vocabulary Triangle Congruence
Geometry Unit 4 Vocabulary Triangle Congruence Biconditional statement – A is a statement that contains the phrase “if and only if.” Writing a biconditional statement is equivalent to writing a conditional statement and its converse. Congruence Transformations–transformations that preserve distance, therefore, creating congruent figures Congruence – the same shape and the same size Corresponding Parts of Congruent Triangles are Congruent CPCTC – the angle made by two lines with a common vertex. (When two lines meet at a common point Included angle (vertex) the angle between them is called the included angle. The two lines define the angle.) Included side – the common side of two legs. (Usually found in triangles and other polygons, the included side is the one that links two angles together. Think of it as being “included” between 2 angles. Overlapping triangles – triangles lying on top of one another sharing some but not all sides. Theorems AAS Congruence Theorem – Triangles are congruent if two pairs of corresponding angles and a pair of opposite sides are equal in both triangles. ASA Congruence Theorem -Triangles are congruent if any two angles and their included side are equal in both triangles. SAS Congruence Theorem -Triangles are congruent if any pair of corresponding sides and their included angles are equal in both triangles. SAS SSS Congruence Theorem -Triangles are congruent if all three sides in one triangle are congruent to the corresponding sides in the other. Special congruence theorem for RIGHT TRIANGLES! . -
A Congruence Problem for Polyhedra
A congruence problem for polyhedra Alexander Borisov, Mark Dickinson, Stuart Hastings April 18, 2007 Abstract It is well known that to determine a triangle up to congruence requires 3 measurements: three sides, two sides and the included angle, or one side and two angles. We consider various generalizations of this fact to two and three dimensions. In particular we consider the following question: given a convex polyhedron P , how many measurements are required to determine P up to congruence? We show that in general the answer is that the number of measurements required is equal to the number of edges of the polyhedron. However, for many polyhedra fewer measurements suffice; in the case of the cube we show that nine carefully chosen measurements are enough. We also prove a number of analogous results for planar polygons. In particular we describe a variety of quadrilaterals, including all rhombi and all rectangles, that can be determined up to congruence with only four measurements, and we prove the existence of n-gons requiring only n measurements. Finally, we show that one cannot do better: for any ordered set of n distinct points in the plane one needs at least n measurements to determine this set up to congruence. An appendix by David Allwright shows that the set of twelve face-diagonals of the cube fails to determine the cube up to conjugacy. Allwright gives a classification of all hexahedra with all face- diagonals of equal length. 1 Introduction We discuss a class of problems about the congruence or similarity of three dimensional polyhedra.