Civilian Gunshot Wounds to the Head: a Case Report, Clinical Management, and Literature Review Haoyi Qi1 and Kunzheng Li2*

Total Page:16

File Type:pdf, Size:1020Kb

Civilian Gunshot Wounds to the Head: a Case Report, Clinical Management, and Literature Review Haoyi Qi1 and Kunzheng Li2* Qi and Li Chinese Neurosurgical Journal (2021) 7:12 https://doi.org/10.1186/s41016-020-00227-9 中华医学会神经外科学分会 CHINESE MEDICAL ASSOCIATION CHINESE NEUROSURGICAL SOCIETY CASE REPORT Open Access Civilian gunshot wounds to the head: a case report, clinical management, and literature review Haoyi Qi1 and Kunzheng Li2* Abstract Background: Civilian gunshot wounds to the head refer to brain injury caused by projectiles such as gun projectiles and various fragments generated by explosives in a power launch or explosion. Gunshot wounds to the head are the deadliest of all gun injuries. According to literature statistics, the survival rate of patients with gunshot wounds to the head is only 9%. Due to the strict management of various types of firearms, they rarely occur, so the injury mechanism, injury and trauma analysis, clinical management, and surgical standards are almost entirely based on military experience, and there are few related reports, especially of the head, in which an individual suffered a fatal blow more than once in a short time. We report a case with a return to almost complete recovery despite the patient suffering two gunshot injuries to the head in a short period of time. Case presentations: We present a case of a 53-year-old man who suffered two gunshot injuries to the head under unknown circumstances. On initial presentation, the patient had a Glasgow Coma Scale score of 6, was unable to communicate, and had loss of consciousness. The first bullet penetrated the right frontal area and finally reached the right occipital lobe. When the patient reflexively shielded his head with his hand, the second bullet passed through the patient’s right palm bone, entered the right frontotemporal area, and came to rest deep in the lateral sulcus. The patient had a cerebral hernia when he was admitted to the hospital and immediately entered the operating room for rescue after a computed tomography scan. After two foreign body removals and skull repair, the patient recovered completely. Conclusions: Gunshot wounds to the head have a high mortality rate and usually require aggressive management. Evaluation of most gunshot injuries requires extremely fast imaging examination upon arrival at the hospital, followed by proactive treatment against infection, seizure, and increased intracranial pressure. Surgical intervention is usually necessary, and its key points include the timing, method, and scope of the operation. Keywords: Gunshot wound, Head trauma, Penetrating brain injury, Traumatic brain injury * Correspondence: [email protected] 2The Affiliated Hospital of Qinghai University, No. 29 Tongren Road, Xining 810000, Qinghai Province, China Full list of author information is available at the end of the article © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Qi and Li Chinese Neurosurgical Journal (2021) 7:12 Page 2 of 9 Background repetitive farming activities by himself without the The surgical management of gunshot wounds to the care of his family. head (GWH) is still a challenging issue in neurosurgery [1]. Even after experience acquired during the two Case presentation World Wars and multiple local wars, the surgical man- A 53-year-old male with two GWH to his right cerebral agement of such patients still needs further discussion hemisphere presented with a GCS score of 6 to the hos- because mortality and morbidity remain high despite pital. According to the emergency physician’s report, the technological improvements in the last decades [1, 2]. patient was taken to the hospital about 3 h after the in- Neurosurgeons vary considerably in their approaches to jury. The patient was on the way to the hospital with a GWH. Studies have shown that the age of the patient, a fixed right pupil, so he was given mannitol timely in the high preoperative Glasgow Coma Scale (GCS) score, lack ambulance. We speculated that the duration of brain of pupil abnormalities, and absence of intracerebral herniation was at least 1 h. He was hemodynamically hematoma are predictors of a good prognosis [1]. stable and intubated, there were two adjacent bullet The largest retrospective studies to date have shown holes in the patient’s right frontal area, and no ballistic that penetrating GWH are very often fatal even with exit was seen. Neurological examination revealed that appropriate medical and surgical treatment, with 71% his right pupil was fixed and dilated, and his left pupil of patients dying at the scene, 66-90% of those dying was 2.5-mm wide and reactive. He was responsive to before reaching a hospital, and up to a 51% survival pain stimuli but not to verbal stimuli. A computed tom- rate among those reaching the hospital alive [3–5]. ography (CT) scan of the head revealed a bullet trajec- We highlight the current management guidelines, tory with a right frontal comminuted fracture and bony prognostic factors, and survival outcomes in patients and metallic fragments in the right frontal and right oc- with penetrating GWH. We report a case that is cipital lobes. There was also some brain tissue swelling unique due to the successful outcome and return to with a midline shift to the left and subarachnoid almost complete recovery despite two gunshots to the hemorrhage (Fig. 1). Since the patient had a brain her- head and a low GCS score. We defined the almost niation at admission, he was immediately transferred to complete recovery as the ability to complete simple, the operating room for debridement and decompressive Fig. 1 Computed tomography (CT) upon admission. a Soft tissue windows and b bone windows, showing the metal artifacts from the bullet case. Postoperative CT on the same day in soft tissue windows c, and bone windows d after decompressive craniectomy Qi and Li Chinese Neurosurgical Journal (2021) 7:12 Page 3 of 9 Fig. 2 Computed tomography (CT) upon admission. a Soft tissue windows and b bone windows, showing the bullet fragment in the occipital lobe. Postoperative CT scan in soft tissue windows c and bone windows d after the second operation, clearly showing the skull window accommodating some swelling craniectomy after the first CT scan. Considering the spe- alone. There was no obvious cognitive impairment, but cificity of the patient’s intracranial hematoma location his personality had slightly changed. The main manifest- and foreign body location, we performed an extended ation was that he did not like to communicate with pterional approach and decompressive craniectomy in others. He did not experience seizures or other neuro- time. We did not temporarily remove the foreign body logical symptoms. The Wisconsin card sorting test was in the occipital lobe but waited for the patient’s vital used to assess the patient’s performance during the signs to stabilize after the first operation and then evalu- follow-up. The result was good. A series of non- ated whether it was suitable for removal or maintenance. cognitive function evaluations, such as the Functional The analysis of why this decision was taken is presented Activity Questionnaire and Hamilton Depression Scale, in detail in the surgical management section. The patient were also carried out. The results were satisfactory, and recovered well after the first operation with no infection the patient showed no signs of anxiety or depression. or brain abscess development and underwent a second operation 2 weeks later to remove the foreign body in Discussion the occipital lobe (Fig. 2). He was discharged 7 days later. Prehospital treatment The patient visited the hospital for a re-examination 2 Based on the outcomes of a prospective study, all GWH months after the injury, and hydrocephalus was found to patients should initially receive aggressive resuscitation have occurred. We performed skull repair 3 months after [6]. Patients with stable vital signs should be examined injury. The patient came in for a 6-month follow-up. by CT. If the patient’s GCS score after resuscitation is 3 During the subsequent follow-up, hydrocephalus did not to 5 and no operable hematomas are present, then no continue to develop, and head CT yielded no new or further therapy should be offered [2, 6]. All patients with concerning findings, so we did not perform additional a GCS score greater than 5 should receive aggressive clinical management (Fig. 3). The last telephone follow- surgical therapy [2, 6]. However, some recent retrospect- up was performed a year after his injury. According to ive studies have shown that GCS score at admission and the patient’s family members, the self-care ability of the the status of pupils and hemodynamics seem to be the patient was fair, and he could complete housework most significant predictors of outcome in penetrating Qi and Li Chinese Neurosurgical Journal (2021) 7:12 Page 4 of 9 Fig. 3 Two months after discharge, a head computed tomography (CT) scan a and b revealed hydrocephalus.
Recommended publications
  • Spinal Cord Injury and Traumatic Brain Injury Research Grant Program Report 2020
    This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp Spinal Cord Injury and Traumatic Brain Injury Research Grant Program Report January 15, 2020 Author About the Minnesota Office of Higher Education Alaina DeSalvo The Minnesota Office of Higher Education is a Competitive Grants Administrator cabinet-level state agency providing students with Tel: 651-259-3988 financial aid programs and information to help [email protected] them gain access to postsecondary education. The agency also serves as the state’s clearinghouse for data, research and analysis on postsecondary enrollment, financial aid, finance and trends. The Minnesota State Grant Program is the largest financial aid program administered by the Office of Higher Education, awarding up to $207 million in need-based grants to Minnesota residents attending eligible colleges, universities and career schools in Minnesota. The agency oversees other state scholarship programs, tuition reciprocity programs, a student loan program, Minnesota’s 529 College Savings Plan, licensing and early college awareness programs for youth. Minnesota Office of Higher Education 1450 Energy Park Drive, Suite 350 Saint Paul, MN 55108-5227 Tel: 651.642.0567 or 800.657.3866 TTY Relay: 800.627.3529 Fax: 651.642.0675 Email: [email protected] Table of Contents Introduction 1 Spinal Cord Injury and Traumatic Brain Injury Advisory Council 1 FY 2020 Proposal Solicitation Schedule
    [Show full text]
  • A Rare Case of Penetrating Trauma of Frontal Sinus with Anterior Table Fracture Himanshu Raval1*, Mona Bhatt2 and Nihar Gaur3
    ISSN: 2643-4474 Raval et al. Neurosurg Cases Rev 2020, 3:046 DOI: 10.23937/2643-4474/1710046 Volume 3 | Issue 2 Neurosurgery - Cases and Reviews Open Access CASE REPORT Case Report: A Rare Case of Penetrating Trauma of Frontal Sinus with Anterior Table Fracture Himanshu Raval1*, Mona Bhatt2 and Nihar Gaur3 1 Department of Neurosurgery, NHL Municipal Medical College, SVP Hospital Campus, Gujarat, India Check for updates 2Medical Officer, CHC Dolasa, Gujarat, India 3GAIMS-GK General Hospital, Gujarat, India *Corresponding author: Dr. Himanshu Raval, Resident, Department of Neurosurgery, NHL Municipal Medical College, SVP Hospital Campus, Elisbridge, Ahmedabad, Gujarat, 380006, India, Tel: 942-955-3329 Abstract Introduction Background: Head injury is common component of any Road traffic accident (RTA) is the most common road traffic accident injury. Injury involving only frontal sinus cause of cranio-facial injury and involvement of frontal is uncommon and unique as its management algorithm is bone fractures are rare and constitute 5-9% of only fa- changing over time with development of radiological modal- ities as well as endoscopic intervention. Frontal sinus inju- cial trauma. The degree of association has been report- ries may range from isolated anterior table fractures causing ed to be 95% with fractures of the anterior table or wall a simple aesthetic deformity to complex fractures involving of the frontal sinuses, 60% with the orbital rims, and the frontal recess, orbits, skull base, and intracranial con- 60% with complex injuries of the naso-orbital-ethmoid tents. Only anterior table injury of frontal sinus is rare in pen- region, 33% with other orbital wall fractures and 27% etrating head injury without underlying brain injury with his- tory of unconsciousness and questionable convulsion which with Le Fort level fractures.
    [Show full text]
  • Traumatic Brain Injury
    REPORT TO CONGRESS Traumatic Brain Injury In the United States: Epidemiology and Rehabilitation Submitted by the Centers for Disease Control and Prevention National Center for Injury Prevention and Control Division of Unintentional Injury Prevention The Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation is a publication of the Centers for Disease Control and Prevention (CDC), in collaboration with the National Institutes of Health (NIH). Centers for Disease Control and Prevention National Center for Injury Prevention and Control Thomas R. Frieden, MD, MPH Director, Centers for Disease Control and Prevention Debra Houry, MD, MPH Director, National Center for Injury Prevention and Control Grant Baldwin, PhD, MPH Director, Division of Unintentional Injury Prevention The inclusion of individuals, programs, or organizations in this report does not constitute endorsement by the Federal government of the United States or the Department of Health and Human Services (DHHS). Suggested Citation: Centers for Disease Control and Prevention. (2015). Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA. Executive Summary . 1 Introduction. 2 Classification . 2 Public Health Impact . 2 TBI Health Effects . 3 Effectiveness of TBI Outcome Measures . 3 Contents Factors Influencing Outcomes . 4 Effectiveness of TBI Rehabilitation . 4 Cognitive Rehabilitation . 5 Physical Rehabilitation . 5 Recommendations . 6 Conclusion . 9 Background . 11 Introduction . 12 Purpose . 12 Method . 13 Section I: Epidemiology and Consequences of TBI in the United States . 15 Definition of TBI . 15 Characteristics of TBI . 16 Injury Severity Classification of TBI . 17 Health and Other Effects of TBI .
    [Show full text]
  • Skin Injuries – Can We Determine Timing and Mechanism?
    Skin injuries – can we determine timing and mechanism? Jo Tully VFPMS Seminar 2016 What skin injuries do we need to consider? • Bruising • Commonest accidental and inflicted skin injury • Basic principles that can be applied when formulating opinion • Abrasions • Lacerations }we need to be able to tell the difference • Incisions • Stabs/chops • Bite marks – animal v human / inflicted v ‘accidental’ v self-inflicted Our role…. We are often/usually/always asked…………….. • “What type of injury is it?” • “When did this injury occur?” • “How did this injury occur?” • “Was this injury inflicted or accidental?” • IS THIS CHILD ABUSE? • To be able to answer these questions (if we can) we need knowledge of • Anatomy/physiology/healing - injury interpretation • Forces • Mechanisms in relation to development, plausibility • Current evidence Bruising – can we really tell which bruises are caused by abuse? Definitions – bruising • BLUNT FORCE TRAUMA • Bruise =bleeding beneath intact skin due to BFT • Contusion = bruise in deeper tissues • Haematoma - extravasated blood filling a cavity (or potential space). Usually associated with swelling • Petechiae =Pinpoint sized (0.1-2mm) hemorrhages into the skin due to acute rise in venous pressure • medical causes • direct forces • indirect forces Medical Direct Indirect causes mechanical mechanical forces forces Factors affecting development and appearance of a bruise • Properties of impacting object or surface • Force of impact • Duration of impact • Site - properties of body region impacted (blood supply,
    [Show full text]
  • 5 Things to Know About Traumatic Brain Injuries
    5 Things to Know About Traumatic Brain Injuries What is a Traumatic Brain Injury? A traumatic brain injury (TBI) is defined as a blow or jolt to the head or a penetrating head injury that disrupts the function of the brain. The severity of such an injury may range from: “mild” – i.e., a brief change in mental status or consciousness, to “severe” – i.e., an extended period of unconsciousness or amnesia after the injury. What Causes a Traumatic Brain Injury? A TBI occurs when an outside force impacts the head hard enough to cause the brain to move within the skull, or if the force causes the skull to break and directly hurts the brain. Rapid acceleration/deceleration of the head can also force the brain the move back and forth inside the skull, which pulls apart nerve fibers and causes damage to brain tissue. The most common causes of TBI are: Falls Motor vehicle-traffic crashes Physical violence Sports accidents What are the symptoms of a TBI? A person with a brain injury can experience a variety of symptoms, but not necessarily all of the following symptoms: Lethargy (sluggish, sleepy, gets tired easily) Continuous headache Confusion Ringing in the ears, or changes in ability to hear Vision changes (blurred vision, seeing double, light-sensitive) Dilated pupils Difficulty thinking (memory problems, poor judgment, poor attention span, slow thought process) Dizziness or balance problems Inappropriate emotional responses (irritability, easily frustrated, inappropriate crying or laughing) Difficulty speaking (slurred speech) Respiratory problems (slow or uneven breathing) Vomiting Body numbness or tingling Paralysis (difficulty moving body parts, weakness, poor coordination) Semi-comatose (not alert and unable to respond to others) Loss of consciousness Who is at Highest Risk for TBI? The two age groups at the highest first for TBI are 0-4 year olds and 15-19 year olds.
    [Show full text]
  • Wound Classification
    Wound Classification Presented by Dr. Karen Zulkowski, D.N.S., RN Montana State University Welcome! Thank you for joining this webinar about how to assess and measure a wound. 2 A Little About Myself… • Associate professor at Montana State University • Executive editor of the Journal of the World Council of Enterstomal Therapists (JWCET) and WCET International Ostomy Guidelines (2014) • Editorial board member of Ostomy Wound Management and Advances in Skin and Wound Care • Legal consultant • Former NPUAP board member 3 Today We Will Talk About • How to assess a wound • How to measure a wound Please make a note of your questions. Your Quality Improvement (QI) Specialists will follow up with you after this webinar to address them. 4 Assessing and Measuring Wounds • You completed a skin assessment and found a wound. • Now you need to determine what type of wound you found. • If it is a pressure ulcer, you need to determine the stage. 5 Assessing and Measuring Wounds This is important because— • Each type of wound has a different etiology. • Treatment may be very different. However— • Not all wounds are clear cut. • The cause may be multifactoral. 6 Types of Wounds • Vascular (arterial, venous, and mixed) • Neuropathic (diabetic) • Moisture-associated dermatitis • Skin tear • Pressure ulcer 7 Mixed Etiologies Many wounds have mixed etiologies. • There may be both venous and arterial insufficiency. • There may be diabetes and pressure characteristics. 8 Moisture-Associated Skin Damage • Also called perineal dermatitis, diaper rash, incontinence-associated dermatitis (often confused with pressure ulcers) • An inflammation of the skin in the perineal area, on and between the buttocks, into the skin folds, and down the inner thighs • Scaling of the skin with papule and vesicle formation: – These may open, with “weeping” of the skin, which exacerbates skin damage.
    [Show full text]
  • Gunshot Wounds
    Gunshot Wounds Michael Sirkin, MD Chief, Orthopaedic Trauma Service Assistant Professor, New Jersey Medical School North Jersey Orthopaedic Institute Created March 2004; Reviewed March 2006, August 2010 Ballistics • Most bullets made of lead alloy – High specific gravity • Maximal mass • Less effect of air resistance • Bullet tips – Pointed – Round – Flat – Hollow Ballistics • Low velocity bullets – Made of low melting point lead alloys – If fired from high velocity they melt, 2° to friction • Deform • Change missile ballistics • High velocity bullets – Coated or jacketed with a harder metal – High temperature coating – Less deformity when fired Velocity • Energy = ½ mv2 • Energy increases by the square of the velocity and linearly with the mass • Velocity of missile is the most important factor determining amount of energy and subsequent tissue damage Kinetic Energy of High and Low Velocity Firearms Kinetic Energy of Shotgun Shells Wounding power • Low velocity, less severe – Less than 1000 ft/sec – Less than 230 grams • High velocity, very destructive – Greater than 2000 ft/sec – Weight less than 150 grams • Shotguns, very destructive at close range – About 1200 ft/sec – Weight up to 870 grams Factors that cause tissue damage • Crush and laceration • Secondary missiles • Cavitation • Shock wave Crush and Laceration • Principle mechanism in low velocity gunshot wounds • Material in path is crushed or lacerated • The kinetic energy is dissipated • Increased tissue damage with yaw or tumble – Increased profile – Increased rate of kinetic
    [Show full text]
  • Pressure Ulcer Staging Cards and Skin Inspection Opportunities.Indd
    Pressure Ulcer Staging Pressure Ulcer Staging Suspected Deep Tissue Injury (sDTI): Purple or maroon localized area of discolored Suspected Deep Tissue Injury (sDTI): Purple or maroon localized area of discolored intact skin or blood-fi lled blister due to damage of underlying soft tissue from pressure intact skin or blood-fi lled blister due to damage of underlying soft tissue from pressure and/or shear. The area may be preceded by tissue that is painful, fi rm, mushy, boggy, and/or shear. The area may be preceded by tissue that is painful, fi rm, mushy, boggy, warmer or cooler as compared to adjacent tissue. warmer or cooler as compared to adjacent tissue. Stage 1: Intact skin with non- Stage 1: Intact skin with non- blanchable redness of a localized blanchable redness of a localized area usually over a bony prominence. area usually over a bony prominence. Darkly pigmented skin may not have Darkly pigmented skin may not have visible blanching; its color may differ visible blanching; its color may differ from surrounding area. from surrounding area. Stage 2: Partial thickness loss of Stage 2: Partial thickness loss of dermis presenting as a shallow open dermis presenting as a shallow open ulcer with a red pink wound bed, ulcer with a red pink wound bed, without slough. May also present as without slough. May also present as an intact or open/ruptured serum- an intact or open/ruptured serum- fi lled blister. fi lled blister. Stage 3: Full thickness tissue loss. Stage 3: Full thickness tissue loss. Subcutaneous fat may be visible but Subcutaneous fat may be visible but bone, tendon or muscle are not exposed.
    [Show full text]
  • Penetrating Injury to the Head: Case Reviews K Regunath, S Awang*, S B Siti, M R Premananda, W M Tan, R H Haron**
    CASE REPORT Penetrating Injury to the Head: Case Reviews K Regunath, S Awang*, S B Siti, M R Premananda, W M Tan, R H Haron** *Department of Neurosciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, **Department of Neurosurgery, Hospital Kuala Lumpur the right frontal lobe to a depth of approximately 2.5cm. SUMMARY (Figure 1: A & B) There was no obvious intracranial Penetrating injury to the head is considered a form of severe haemorrhage along the track of injury. The patient was taken traumatic brain injury. Although uncommon, most to the operating theatre and was put under general neurosurgical centres would have experienced treating anaesthesia. The nail was cut proximal to the entry wound patients with such an injury. Despite the presence of well and the piece of wood removed. The entry wound was found written guidelines for managing these cases, surgical to be contaminated with hair and debris. The nail was also treatment requires an individualized approach tailored to rusty. A bicoronal skin incision was fashioned centred on the the situation at hand. We describe a collection of three cases entry wound. A bifrontal craniotomy was fashioned and the of non-missile penetrating head injury which were managed bone flap removed sparing a small island of bone around the in two main Neurosurgical centres within Malaysia and the nail (Figure 1: C&D). Bilateral “U” shaped dural incisions unique management approaches for each of these cases. were made with the base to the midline. The nail was found to have penetrated with dura about 0.5cm from the edge of KEY WORDS: Penetrating head injury, nail related injury, atypical penetrating the sagittal sinus.
    [Show full text]
  • The Care of a Patient with Fournier's Gangrene
    CASE REPORT The care of a patient with Fournier’s gangrene Esma Özşaker, Asst. Prof.,1 Meryem Yavuz, Prof.,1 Yasemin Altınbaş, MSc.,1 Burçak Şahin Köze, MSc.,1 Birgül Nurülke, MSc.2 1Department of Surgical Nursing, Ege University Faculty of Nursing, Izmir; 2Department of Urology, Ege University Faculty of Medicine Hospital, Izmir ABSTRACT Fournier’s gangrene is a rare, necrotizing fasciitis of the genitals and perineum caused by a mixture of aerobic and anaerobic microor- ganisms. This infection leads to complications including multiple organ failure and death. Due to the aggressive nature of this condition, early diagnosis is crucial. Treatment involves extensive soft tissue debridement and broad-spectrum antibiotics. Despite appropriate therapy, mortality is high. This case report aimed to present nursing approaches towards an elderly male patient referred to the urology service with a diagnosis of Fournier’s gangrene. Key words: Case report; Fournier’s gangrene; nursing diagnosis; patient care. INTRODUCTION Rarely observed in the peritoneum, genital and perianal re- perineal and genital regions, it is observed in a majority of gions, necrotizing fasciitis is named as Fournier’s gangrene.[1-5] cases with general symptoms, such as fever related infection It is an important disease, following an extremely insidious and weakness, and without symptoms in the perineal region, beginning and causing necrosis of the scrotum and penis by negatively influencing the prognosis by causing a delay in diag- advancing rapidly within one-two days.[1] The rate of mortal- nosis and treatment.[2,3] Consequently, anamnesis and physical ity in the literature is between 4 and 75%[6] and it has been examination are extremely important.
    [Show full text]
  • Thoracic Gunshot Wound: a Tanmoy Ganguly1, 1 Report of 3 Cases and Review of Sandeep Kumar Kar , Chaitali Sen1, Management Chiranjib Bhattacharya2, Manasij Mitra3
    2015 iMedPub Journals Journal of Universal Surgery http://www.imedpub.com Vol. 3 No. 1:2 ISSN 2254-6758 Thoracic Gunshot Wound: A Tanmoy Ganguly1, 1 Report of 3 Cases and Review of Sandeep Kumar Kar , Chaitali Sen1, Management Chiranjib Bhattacharya2, Manasij Mitra3, 1 Department of Cardiac Anesthesiology, Abstract Institute of Postgraduate Medical Thoracic gunshot injury may have variable presentation and the treatment plan Education and Research, Kolkata, India differs. The risk of injury to heart, major blood vessels and the lungs should be 2 Department of Anesthesiology, Institute evaluated in every patient with rapid clinical examination and basic monitoring and of Postgraduate Medical Education and surgery should be considered as early as possible whenever indicated. The authors Research, Kolkata, India present three cases of thoracic gunshot injury with three different presentations, 3 Krisanganj Medical College, Institute of one with vascular injury, one with parenchymal injury and one case with fortunately Postgraduate Medical Education and no life threatening internal injury. The first case, a 52 year male patient presented Research, Kolkata, India with thoracic gunshot with hemothorax and the bullet trajectory passed very near to the vital structures without injuring them. The second case presented with 2 hours history of thoracic gunshot wound with severe hemodynamic instability. Corresponding author: Sandeep Kumar Surgical exploration revealed an arterial bleeding from within the left lung. The Kar, Assistant Professor third case presented with post gunshot open pneumothorax. All three cases managed successfully with resuscitation and thoracotomy. Preoperative on table fluoroscopy was used for localisation of bullet. [email protected] Keywords: Horacic trauma, Gunshot injury, Traumatic pneumothorax, Emergency thoracotomy, Fluoroscopy.
    [Show full text]
  • NIH Public Access Author Manuscript J Neuropathol Exp Neurol
    NIH Public Access Author Manuscript J Neuropathol Exp Neurol. Author manuscript; available in PMC 2010 September 24. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Neuropathol Exp Neurol. 2009 July ; 68(7): 709±735. doi:10.1097/NEN.0b013e3181a9d503. Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy following Repetitive Head Injury Ann C. McKee, MD1,2,3,4, Robert C. Cantu, MD3,5,6,7, Christopher J. Nowinski, AB3,5, E. Tessa Hedley-Whyte, MD8, Brandon E. Gavett, PhD1, Andrew E. Budson, MD1,4, Veronica E. Santini, MD1, Hyo-Soon Lee, MD1, Caroline A. Kubilus1,3, and Robert A. Stern, PhD1,3 1 Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 2 Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 3 Center for the Study of Traumatic Encephalopathy, Boston University School of Medicine, Boston, Massachusetts 4 Geriatric Research Education Clinical Center, Bedford Veterans Administration Medical Center, Bedford, Massachusetts 5 Sports Legacy Institute, Waltham, MA 6 Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts 7 Department of Neurosurgery, Emerson Hospital, Concord, MA 8 CS Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Abstract Since the 1920s, it has been known that the repetitive brain trauma associated with boxing may produce a progressive neurological deterioration, originally termed “dementia pugilistica” and more recently, chronic traumatic encephalopathy (CTE). We review the 47 cases of neuropathologically verified CTE recorded in the literature and document the detailed findings of CTE in 3 professional athletes: one football player and 2 boxers.
    [Show full text]