Coastal-Oceanic Distribution Gradient of Coccolithophores and Their Role In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
An Explanation for the 18O Excess in Noelaerhabdaceae Coccolith Calcite
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 189 (2016) 132–142 www.elsevier.com/locate/gca An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite M. Hermoso a,⇑, F. Minoletti b,c, G. Aloisi d,e, M. Bonifacie f, H.L.O. McClelland a,1, N. Labourdette b,c, P. Renforth g, C. Chaduteau f, R.E.M. Rickaby a a University of Oxford – Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom b Sorbonne Universite´s, UPMC Universite´ Paris 06 – Institut de Sciences de la Terre de Paris (ISTeP), 4 Place Jussieu, 75252 Paris Cedex 05, France c CNRS – UMR 7193 ISTeP, 4 Place Jussieu, 75252 Paris Cedex 05, France d Sorbonne Universite´s, UPMC Universite´ Paris 06 – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France e CNRS – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France f Institut de Physique du Globe de Paris, Sorbonne Paris Cite´, Universite´ Paris-Diderot, UMR CNRS 7154, 1 rue Jussieu, 75238 Paris Cedex, France g Cardiff University – School of Earth and Ocean Sciences, Parks Place, Cardiff CF10 3AT, United Kingdom Received 10 November 2015; accepted in revised form 11 June 2016; available online 18 June 2016 Abstract Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals pro- duced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the ‘‘vital effect”, which overprints the oceanic temperatures recorded in coccolith calcite. -
Biology and Systematics of Heterokont and Haptophyte Algae1
American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed. -
Coccolithophore Distribution in the Mediterranean Sea and Relate A
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 613–653, 2014 Open Access www.ocean-sci-discuss.net/11/613/2014/ Ocean Science OSD doi:10.5194/osd-11-613-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 11, 613–653, 2014 This discussion paper is/has been under review for the journal Ocean Science (OS). Coccolithophore Please refer to the corresponding final paper in OS if available. distribution in the Mediterranean Sea Is coccolithophore distribution in the A. M. Oviedo et al. Mediterranean Sea related to seawater carbonate chemistry? Title Page Abstract Introduction A. M. Oviedo1, P. Ziveri1,2, M. Álvarez3, and T. Tanhua4 Conclusions References 1Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain Tables Figures 2Earth & Climate Cluster, Department of Earth Sciences, FALW, Vrije Universiteit Amsterdam, FALW, HV1081 Amsterdam, the Netherlands J I 3IEO – Instituto Espanol de Oceanografia, Apd. 130, A Coruna, 15001, Spain 4GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Marine Biogeochemistry, J I Duesternbrooker Weg 20, 24105 Kiel, Germany Back Close Received: 31 December 2013 – Accepted: 15 January 2014 – Published: 20 February 2014 Full Screen / Esc Correspondence to: A. M. Oviedo ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 613 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD The Mediterranean Sea is considered a “hot-spot” for climate change, being char- acterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate 11, 613–653, 2014 chemistry. Coccolithophores are considered a dominant phytoplankton group in these 5 waters. -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. -
Is Coccolithophore Distribution in the Mediterranean Sea Related to Seawater Carbonate Chemistry? A
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 613–653, 2014 Open Access www.ocean-sci-discuss.net/11/613/2014/ Ocean Science doi:10.5194/osd-11-613-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Ocean Science (OS). Please refer to the corresponding final paper in OS if available. Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry? A. M. Oviedo1, P. Ziveri1,2, M. Álvarez3, and T. Tanhua4 1Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain 2Earth & Climate Cluster, Department of Earth Sciences, FALW, Vrije Universiteit Amsterdam, FALW, HV1081 Amsterdam, the Netherlands 3IEO – Instituto Espanol de Oceanografia, Apd. 130, A Coruna, 15001, Spain 4GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Marine Biogeochemistry, Duesternbrooker Weg 20, 24105 Kiel, Germany Received: 31 December 2013 – Accepted: 15 January 2014 – Published: 20 February 2014 Correspondence to: A. M. Oviedo ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 613 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract The Mediterranean Sea is considered a “hot-spot” for climate change, being char- acterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these 5 waters. As a marine calcifying organism they are expected to respond to the ongo- ing changes in seawater CO2 systems parameters. However, very few studies have covered the entire Mediterranean physiochemical gradients from the Strait of Gibral- tar to the Eastern Mediterranean Levantine Basin. -
Transcriptomic Response of the Toxic Prymnesiophyte Prymnesium Parvum
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Harmful Algae 18 (2012) 1–15 Contents lists available at SciVerse ScienceDirect Harmful Algae jo urnal homepage: www.elsevier.com/locate/hal Transcriptomic response of the toxic prymnesiophyte Prymnesium parvum (N. Carter) to phosphorus and nitrogen starvation a, a,b,1 a,1 a c,d Sa´ra Beszteri *, Ines Yang , Nina Jaeckisch , Urban Tillmann , Stephan Frickenhaus , e a a Gernot Glo¨ckner , Allan Cembella , Uwe John a Department of Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27568 Bremerhaven, Germany b Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany c Computing centre/Bioinformatics, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27568 Bremerhaven, Germany d Hochschule Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany e Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Mu¨ggelseedamm 301, D-12587 Berlin, Germany A R T I C L E I N F O A B S T R A C T Article history: The ichthyotoxic and mixotrophic prymnesiophyte Prymnesium parvum is known to produce dense Received 23 August 2011 virtually monospecific blooms in marine coastal, brackish, and inshore waters. Fish-killing Pyrmnesium Received in revised form 6 March 2012 blooms are often associated with macronutrient imbalanced conditions based upon shifts in ambient Accepted 6 March 2012 nitrogen (N):phosphorus (P) ratios. We therefore investigated nutrient-dependent cellular acclimation Available online 30 March 2012 mechanisms of this microalga based upon construction of a normalized expressed sequence tag (EST) library. -
A 15 Million-Year Long Record of Phenotypic Evolution in the Heavily Calcified Coccolithophore Helicosphaera and Its Biogeochemical Implications
A 15 million-year long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications 5 Luka Šupraha1, a, Jorijntje Henderiks1, 2 1 Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden. 2 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway. a Present address: Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, P.O. 10 Box 1066 Blindern, 0316 Oslo, Norway Correspondence to: Luka Šupraha ([email protected]) Abstract. The biogeochemical impact of coccolithophores is defined by their overall abundance in the oceans, but also by a wide range in physiological traits such as cell size, degree of calcification and carbon production rates between different species. Species’ “sensitivity” to environmental forcing has been suggested to relate to their cellular PIC:POC ratio and other 15 physiological constraints. Understanding both the short and longer-term adaptive strategies of different coccolithophore lineages, and how these in turn shape the biogeochemical role of the group, is therefore crucial for modeling the ongoing changes in the global carbon cycle. Here we present data on the phenotypic evolution of a large and heavily-calcified genus Helicosphaera (order Zygodiscales) over the past 15 million years (Ma), at two deep-sea drill sites from the tropical Indian Ocean and temperate South Atlantic. The modern species Helicosphaera carteri, which displays eco-physiological adaptations 20 in modern strains, was used to benchmark the use of its coccolith morphology as a physiological proxy in the fossil record. -
Lpezotlvaro2008.Pdf
Marine Micropaleontology 69 (2008) 52–69 Contents lists available at ScienceDirect Marine Micropaleontology journal homepage: www.elsevier.com/locate/marmicro Variations in coccolithophorid production in the Eastern Equatorial Pacificat ODP Site 1240 over the last seven glacial–interglacial cycles Gatsby-Emperatriz López-Otálvaro a,⁎, José-Abel Flores a, Francisco Javier Sierro a, Isabel Cacho b a Department of Geology, University of Salamanca, Plaza de la Merced s/n, E-37008 Salamanca, Spain b CRG Marine Geosciences, Department of Stratigraphy, Paleontology and Marine Geosciences, University of Barcelona, C/Martí i Franqués, s/n, E-08028 Barcelona, Spain article info abstract Article history: The calcareous nannofossil assemblage from ODP Site 1240 in the equatorial upwelling of the Accepted 19 November 2007 Eastern Pacific was analysed for the last 560 Ka. The chronological framework was set with a combination of isotopic stratigraphy, nannofossil biostratigraphy and one paleomagnetic event. Keywords: Owing to the dominance of selected Noelaerhabdaceae taxa and Florisphaera profunda, the N Coccolithophores index (modified from [Flores, J.A., Bárcena, M.A. y Sierro, F.J., 2000. Ocean-surface and wind Paleoproductivity dynamics in the Atlantic Ocean off northwest Africa during the last 140 000 years. Pleistocene Palaeogeography, Palaeoclimatology, Palaeoecology 161, 459–478]) was used to investigate Coccolith carbonate the fluctuations of the nutri-thermocline in the Eastern Equatorial Pacific Ocean. This ratio Nannofossil accumulation rate (NAR) Eastern Equatorial Pacific measures the relative proportion of taxa that usually live in the upper photic zone in relation to ENSO those that usually thrive in the lower photic zone. Temporal changes in the relative abundances of these species over the last 560 Ka may therefore be related to variability in surface water conditions. -
On the Ultrastructure of Gephyrocapsa Oceanica (Haptophyta) Life Stages
Cryptogamie, Algologie, 2014, 35 (4): 379-388 © 2014 Adac. Tous droits réservés On the ultrastructure of Gephyrocapsa oceanica (Haptophyta) life stages El Mahdi BENDIFa* & Jeremy YOUNGb aMarine Biological Association of the UK, Plymouth, UK bDepartment of Earth Sciences, University College, London, UK Résumé – Gephyrocapsa oceanica est une espèce cosmopolite de coccolithophores appar- tenant à la famille des Noëlaerhabdaceae dans l’ordre des Isochrysidales. Exclusivement pélagique, G. oceanica est fréquemment retrouvée dans les océans modernes ainsi que dans les sédiments fossiles. Aussi, elle est apparentée à Emiliania huxleyi chez qui un cycle haplodiplobiontique a été décrit, avec un stade diploïde ou les cellules sont immobiles et ornées de coccolithes, qui alterne avec un stade haploïde ou les cellules sont mobiles et ornées d’écailles organiques. Alors que la cytologie et l’ultrastructure des autres membres des Noëlaerhabdaceae n’ont jamais été étudié, ces caractères peuvent être uniques au genre Emiliania ou communs à la famille. Dans cette étude, nous présentons pour la première fois l’ultrastructure des stades non-calcifiants mobiles et calcifiants immobile de G. oceanica. Nous n’avons pas retrouvé de différences ultrastructurales significatives entre ces deux morpho-espèces apparentées au niveau des stades diploïdes et haploïdes. Les similarités entre ces deux morpho-espèces démontrent une importante conservation des caractères cytologiques. Par ailleurs, nous avons discuté de la vraisemblance de ces résultats en rapport au contexte évolutif des Noelaerhabdaceae. Calcification / coccolithophores / Gephyrocapsa oceanica / cycle de vie / microscopie électronique à transmission / ultrastructure Abstract – Gephyrocapsa oceanica is a cosmopolitan bloom-forming coccolithophore species belonging to the haptophyte order Isochrysidales and family Noëlaerhabdaceae. -
Identification of Calcification Transcripts of Emiliania Huxleyi And
2 Identification of Potential Biomineralization Linked Genes in Emiliania huxleyi via High-Throughput Sequencing with RT-PCR Verification By Chrystal Grace Schroepfer Research Thesis Submitted for the Masters Degree in Biological Sciences Department of Biological Science, College of Science and Mathematics California State University San Marcos November 2011 3 Table of Contents Table of Contents . 2 Acknowledgements . .. 3 Abstract . 4 Introduction . 5 Coccolithophorids . 5 Biomineralization and Coccolithogenesis . 7 Sequence Profiling . 10 Methods and Materials . 14 Strains and Growth Conditions . 14 Scanning Electron Microscopy . 15 2+ - Ca Titration Estimates of CaCO3 . 16 Measuring Photosynthesis Rates . 17 RNA Extraction . 18 RNA Gel Electrophoresis . 20 Experion RNA Electrophoresis . 20 RNA Sequencing . 21 Primer Design . 23 Real Time RT-PCR . 23 Annotation . 26 Results . 27 Cell Growth . 27 Scanning Electron Microscopy . 29 Calcium Titration . 31 Photosynthesis Rates . 34 Solexa Profiles . 35 RNA Extraction & Gel Electrophoresis . 38 Comparative Reverse Transcriptase Real-Time PCR . 43 Annotation . 52 Discussion . 61 References . 77 Appendices. 86 4 Acknowledgements I would like to thank my committee members Dr. Betsy Read, Dr. Matthew Escobar and Dr. Jose Mendoza for their guidance and support throughout the thesis completion process. I would like to thank my parents, John and Mary Schroepfer, my closest friends, Steve and Jeanne Bâby, Gearald Denny, Tom Bento and my Church Family at Bostonia Church of Christ for their love, encouragement and support over the years. To my brothers, David and Jason Schroepfer, thanks for all the laughs. Lastly, I would like to thank all my friends that I made from the laboratory: Estela Carrasco, James Fuller, Jessica Garza, Karina Gonzalez, Latha Kannan, Ray Liang, Tien Nguyen, Alyse Prichard, Analisa Sarno, Andrew Segina, Christina Vanderwerken and William Whalen for their help and all the fun times we shared together. -
Protista (PDF)
1 = Astasiopsis distortum (Dujardin,1841) Bütschli,1885 South Scandinavian Marine Protoctista ? Dingensia Patterson & Zölffel,1992, in Patterson & Larsen (™ Heteromita angusta Dujardin,1841) Provisional Check-list compiled at the Tjärnö Marine Biological * Taxon incertae sedis. Very similar to Cryptaulax Skuja Laboratory by: Dinomonas Kent,1880 TJÄRNÖLAB. / Hans G. Hansson - 1991-07 - 1997-04-02 * Taxon incertae sedis. Species found in South Scandinavia, as well as from neighbouring areas, chiefly the British Isles, have been considered, as some of them may show to have a slightly more northern distribution, than what is known today. However, species with a typical Lusitanian distribution, with their northern Diphylleia Massart,1920 distribution limit around France or Southern British Isles, have as a rule been omitted here, albeit a few species with probable norhern limits around * Marine? Incertae sedis. the British Isles are listed here until distribution patterns are better known. The compiler would be very grateful for every correction of presumptive lapses and omittances an initiated reader could make. Diplocalium Grassé & Deflandre,1952 (™ Bicosoeca inopinatum ??,1???) * Marine? Incertae sedis. Denotations: (™) = Genotype @ = Associated to * = General note Diplomita Fromentel,1874 (™ Diplomita insignis Fromentel,1874) P.S. This list is a very unfinished manuscript. Chiefly flagellated organisms have yet been considered. This * Marine? Incertae sedis. provisional PDF-file is so far only published as an Intranet file within TMBL:s domain. Diplonema Griessmann,1913, non Berendt,1845 (Diptera), nec Greene,1857 (Coel.) = Isonema ??,1???, non Meek & Worthen,1865 (Mollusca), nec Maas,1909 (Coel.) PROTOCTISTA = Flagellamonas Skvortzow,19?? = Lackeymonas Skvortzow,19?? = Lowymonas Skvortzow,19?? = Milaneziamonas Skvortzow,19?? = Spira Skvortzow,19?? = Teixeiromonas Skvortzow,19?? = PROTISTA = Kolbeana Skvortzow,19?? * Genus incertae sedis.