A Nuclear Reactor Can Be

Total Page:16

File Type:pdf, Size:1020Kb

A Nuclear Reactor Can Be An Investigation of How Powerful a Nuclear Reactor Can Be by Tammy L. Stoops Submitted to the Department of Nuclear Engineering in partial fulfillment of the requirements for the degrees of Bachelor of Science in Nuclear Engineering and Master of Science in Nuclear Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1996 © 1996 Massachusetts Institute of Technology All Rights Reserved. Author ......... ............................................... bepartment of Nuclear Engineering May 10. 1996 Certified by ... .......... Michael W. Golay Professor of Nuclear Engineering Thesis Supervisor Certified by ................................................. rfes Jefferson W. Tester fessor ofChemical Engineering Thesis Reader Certified by ............ Michael J. Driscoll Professor Emeritus of Nuclear Engineering Thesis Reader A ccepted by ................................. ............................... - ' Jeffrey P. Freidberg Chairman, Departmental Committee on Graduate Students I'ASSACHUSETTS INS •'"CL OF TECHNOLOGY JUN 2 01996 Science LIBRARIES An Investigation of How Powerful a Nuclear Reactor Can Be by Tammy L. Stoops Submitted to the Department of Nuclear Engineering on May 10, 1996, in partial fulfillment of the requirements for the degrees of Bachelor of Science in Nuclear Engineering and Master of Science in Nuclear Engineering Abstract Nuclear power technologies, emitting no greenhouse gases, may be used to mitigate glo- bal warming by replacing fossil fuel energy sources. Current versions of this technology are not well-suited for this purpose, however. In order to create a suitable nuclear power system, an investigation was performed to identify and improve upon a breeder reactor system capable of large-scale power production. The system would be required to produce hydrogen as a transportable energy source, actively reduce its fission product inventory during operation, and resist nuclear proliferation. An examination of solid, gaseous, and liquid fuel reactors indicated that the molten salt breeder reactor was most capable of meeting future needs. The development of advanced alloys is expected to reduce the problem of corrosion of the structural materials. The coat- ing of the reactor graphite with pyrolytics or silicon carbide and the sizing of the flow channels maximize the graphite moderator lifetime. Also, chemical processing systems have been developed which appear to be adequate for the removal of the fission products, however lack of funding halted their refinement and industrial implementation. The latest designs of molten salt breeder reactors require improvement. The chemical pro- cessing system may be simplified to a one-step, metal transfer process for fission product removal, significantly reducing the residual reactor decay power. The use of a helium- based gas turbine system eliminates hazardous interactions between the fuel and coolant. By elevating the primary heat exchanger, natural circulation may be induced to ease the cooling burden of pump failure. The decay heat can be removed using specially designed cooling tanks which allow both radiative heat losses and natural convection of air over the fuel salt. The questions of economic performance are not considered in the work reported here. The results of this investigation show that this molten salt breeder reactor concept is pas- sively safe. The reactor power may be increased without bound, provided that an increase is made in reactor fuel salt volume, thereby reducing the decay power density. The ability of this concept to meet the desired characteristics for a global warming response is very powerful. Thesis Supervisor: Michael W. Golay Title: Professor of Nuclear Engineering Acknowledgments I would like to thank the many individuals who provided the guidance for this project. Without the patience and advice of Professors Michael W. Golay, Michael J. Driscoll, Larry M. Lidsky, and Jefferson W. Tester, this work would never have become a reality. Without the soothing words of my fiance, Lee Carson, in times of difficulty, I would never have seen the light. I would like to extend a special thanks to Uri Gat, Kazuo Furukawa, and Dick Engel. Their genuine interest and willingness to share their invaluable experi- ence even under the extreme conditions of a hospital stay were greatly appreciated. I truly stand on the shoulders of giants as I reach for a higher star. I would also like to thank my mother, Anne Stoops. Despite the numerous setbacks, you have helped me maintain my hope and determination. Your confidence in me was an endless source of encouragement. As I worked diligently in a field dominated by men, your influence reminded me to never forget who I am, a woman. I love you, Mom. Thank you. Finally, I would like to dedicate this work to my father, Richard Stoops. You have always seen the best in me, Dad, and gave me the faith to believe in myself. Because of you, I strove to reach seemingly unreachable goals and succeeded. When I stumbled, you were always there to pick me up, brush me off, and put me back on track. You have made me who I am, and taught me to acknowledge and accept what I am not. I love you, Dad. Thank you. Contents 1 Introduction ............................................................................................................... 13 1.1 General .............................................................................................................. 13 1.2 Background ....................................................................................................... 14 1.3 M ethod of Investigation .................................................................................... 16 1.4 Scope of the W ork Reported Here .................................................................... 17 2 Required Technology and Reactor Concepts ............................................................ 19 2.1 G eneral .............................................................................................................. 19 2.1.1 Large-Scale Breeding Capability .......................................................... 19 2.1.2 H ydrogen Production Capability .......................................................... 19 2.1.3 Reduction of the Core Fission Product Inventory ................................. 20 2.1.4 N uclear Proliferation Resistance ........................................................... 20 2.2 Solid Fuel Reactors ........................................................................................... 22 2.3 Fluid Fuel Reactors ........................................................................................... 24 2.3.1 G aseous Fuel ......................................................................................... 25 2.3.2 Liquid Fuel ............................................................................................ 25 2.4 Choice of Technology ....................................................................................... 27 3 Status of M olten Salt Reactor D evelopm ent ............................................................. 29 3.1 G eneral .............................................................................................................. 29 3.2 The Fuel Cycle and Reactor Physics ................................................................ 29 3.3 Fuel Chem istry .................................................................................................. 31 3.3.1 Interactions of the Base Fuel Salt ......................................................... 31 3.3.2 Fission Product D istribution ................................................................. 33 3.4 Selection of Salt Container and Piping Materials ............................................. 34 3.5 Graphite ............................................................................................................. 36 3.6 Cooling .............................................................................................................. 39 3.7 Fuel Processing ................................................................................................. 40 3.8 Required Improvem ents .................................................................................... 47 4 Chem ical Processing .................................................................................................. 49 4.1 General .............................................................................................................. 49 4.2 One Step Processing ........................................................................................ 49 4.3 Process Efficiency and Cycle Time .................................................................. 50 4.4 The Fuel D ecay H eat ........................................................................................ 51 5 H eat Transfer Perform ance ........................................................................................ 57 5.1 General .............................................................................................................. 57 5.2 LiF-BeF 2, Helium , and G as Turbines ............................................................... 58 5.3 Natural Circulation of the Fuel Upon Pump Failure ......................................... 59 5.3.1 The Core ............................................................................................... 61 5.3.2 The Prim ary H eat Exchanger ............................................................... 61 5.3.3 The Pum p .............................................................................................
Recommended publications
  • Breeder Reactors: a Renewable Energy Source Bernard L
    Am. J. Phys. 51(1), Jan. 1983 Breeder reactors: A renewable energy source Bernard L. Cohen Department of Physics. University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Since energy sources derived from the sun are called “renew- giving an equilibrium Q = S/8. Assuming that equilibrium has been able,” that adjective apparently means that they will be available in reached, 8–1 = Q/S = (4.6×109 tonne)/ (3.2×104 tonne/yr) = 140 000 undiminished quantity at present costs for as long as the current yr. Since this is such a short time geologically, it is reasonable to relationship between the sun and Earth persists, about 5 billion assume that equilibrium has been reached, and that the value of Q years. It is the purpose of this note to show that breeder reactors at t = 0 is immaterial to the discussion. Moreover, the fact that 8–1 using nuclear fission fulfill this definition of a renewable energy is so much longer than the time for dilution of material through the source, and in fact can supply all the world’s energy needs at world’s oceans, less than 1000 yr,5 means that nonuniformity of present costs for that time period. uranium concentration is not a long-term problem. The world’s uranium resources are sufficient to fuel light-water If we were to withdraw uranium at a rate R, the differential reactors for only a few tens of years, and since uranium is used equation for Q would become about 100 times more efficiently as an energy source in breeder dQ/dt = S – R – 8Q, 8 reactors than in light-water reactors, it is frequently said that the leading to an equilibrium Q = (S – R)/ = Q00(1 – R/S), where Q is amount of uranium available can support the world’s energy needs the present value of Q.
    [Show full text]
  • The Nuclear Waste Primer September 2016 What Is Nuclear Waste?
    The Nuclear Waste Primer September 2016 What is Nuclear Waste? Nuclear waste is the catch-all term for anything contaminated with radioactive material. Nuclear waste can be broadly divided into three categories: • Low-level waste (LLW), comprised of protective clothing, medical waste, and other lightly-contaminated items • Transuranic waste (TRU), comprised of long-lived isotopes heavier than uranium • High-level waste (HLW), comprised of spent nuclear fuel and other highly-radioactive materials Low-level waste is relatively short-lived and easy to handle. Currently, four locations for LLW disposal exist in the United States. Two of them, Energy Solutions in Clive, Utah and Waste Control Specialists in Andrews, Texas, accept waste from any U.S. state. Transuranic waste is often a byproduct of nuclear weapons production and contains long-lived radioactive elements heavier than uranium, like plutonium and americium. Currently, the U.S. stores TRU waste at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. High-level waste includes spent nuclear fuel and the most radioactive materials produced by nuclear weapons production. Yucca Mountain is the currently designated high-level waste repository for the United States. 1 | What is Spent Nuclear Fuel? Spent nuclear fuel (SNF), alternatively referred to as used nuclear fuel, is the primary byproduct of nuclear reactors. In commercial power reactors in the U.S., fuel begins as uranium oxide clad in a thin layer of zirconium-aluminum cladding. After several years inside of the reactor, around fi ve percent of the uranium has been converted in some way, ranging from short-lived and highly radioactive fi ssion products to long-lived actinides like plutonium, americium, and neptunium.
    [Show full text]
  • IAEA Guidelines and Formatting Rules for Papers for Proceeding
    Interactive Computer Codes for Education and Training on Nuclear Safety and Radioprotection Francisco leszczynski∗ RA-6 Division, Nuclear Engineering Unit, Bariloche Atomic Center, CNEA, Av.E.Bustillo 8500, S.C.de Bariloche, RN, Argentina Abstract. Two interactive computer codes for education and training on nuclear safety and radioprotection developed at RA6 Reactor Division-Bariloche Atomic Center-CNEA are presented on this paper. The first code named SIMREACT has been developed in order to simulate the control of a research nuclear reactor in real time with a simple but accurate approach. The code solves the equations of neutron punctual kinetics with time variable reactivity. Utilizing the timer of the computer and the controls of a PC keyboard, with an adequate graphic interface, a simulation in real time of the temporal behavior of a research reactor is obtained. The reactivity can be changed by means of the extraction or insertion of control rods. It was implemented also the simulation of automatic pilot and scram. The use of this code is focalized on practices of nuclear reactor control like start-up from the subcritical state with external source up to power to a desired level, change of power level, calibration of a control rod with different methods, and approach to critical condition by interpolation of the answer in function of reactivity. The second code named LICEN has been developed in order to help the studies of all the topics included in examination programs for obtaining licenses for research reactor operators and radioprotection officials. Using the PC mouse, with an adequate graphic interface, the student can gradually learn the topics related with general and special licenses.
    [Show full text]
  • Ncomms9592.Pdf
    ARTICLE Received 9 May 2015 | Accepted 9 Sep 2015 | Published 9 Oct 2015 DOI: 10.1038/ncomms9592 OPEN High-intensity power-resolved radiation imaging of an operational nuclear reactor Jonathan S. Beaumont1, Matthew P. Mellor2, Mario Villa3 & Malcolm J. Joyce1,4 Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. 1 Department of Engineering, Gillow Avenue, Lancaster University, Lancaster, LA1 4YW, UK. 2 Createc Ltd., Derwent Mills Commercial Park, Cockermouth CA13 0HT, UK. 3 Atominstitut, Vienna University of Technology, 1020 Vienna, Austria. 4 Hybrid Instruments Ltd., Unit 16, ICT Centre, Birmingham Research Park, Vincent Drive, Edgbaston B15 2SQ, UK. Correspondence and requests for materials should be addressed to J.S.B. (email: [email protected]). NATURE COMMUNICATIONS | 6:8592 | DOI: 10.1038/ncomms9592 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]
  • Energy Analysis for the Connection of the Nuclear Reactor DEMO to the European Electrical Grid
    energies Article Energy Analysis for the Connection of the Nuclear Reactor DEMO to the European Electrical Grid Sergio Ciattaglia 1, Maria Carmen Falvo 2,* , Alessandro Lampasi 3 and Matteo Proietti Cosimi 2 1 EUROfusion Consortium, 85748 Garching, Germany; [email protected] 2 DIAEE—Department of Astronautics, Energy and Electrical Engineering, University of Rome Sapienza, 00184 Rome, Italy; [email protected] 3 ENEA Frascati, 00044 Frascati, Rome, Italy; [email protected] * Correspondence: [email protected] Received: 31 March 2020; Accepted: 22 April 2020; Published: 1 May 2020 Abstract: Towards the middle of the current century, the DEMOnstration power plant, DEMO, will start operating as the first nuclear fusion reactor capable of supplying its own loads and of providing electrical power to the European electrical grid. The presence of such a unique and peculiar facility in the European transmission system involves many issues that have to be faced in the project phase. This work represents the first study linking the operation of the nuclear fusion power plant DEMO to the actual requirements for its correct functioning as a facility connected to the power systems. In order to build this link, the present work reports the analysis of the requirements that this unconventional power-generating facility should fulfill for the proper connection and operation in the European electrical grid. Through this analysis, the study reaches its main objectives, which are the definition of the limitations of the current design choices in terms of power-generating capability and the preliminary evaluation of advantages and disadvantages that the possible configurations for the connection of the facility to the European electrical grid can have.
    [Show full text]
  • Fast-Spectrum Reactors Technology Assessment
    Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Clean Power Carbon Dioxide Capture and Storage Value- Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells U.S. DEPARTMENT OF Supercritical Carbon Dioxide Brayton Cycle ENERGY Wind Power Clean Power Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4: Technology Assessments Background and Current Status From the initial conception of nuclear energy, it was recognized that full realization of the energy content of uranium would require the development of fast reactors with associated nuclear fuel cycles.1 Thus, fast reactor technology was a key focus in early nuclear programs in the United States and abroad, with the first usable nuclear electricity generated by a fast reactor—Experimental Breeder Reactor I (EBR-I)—in 1951. Test and/or demonstration reactors were built and operated in the United States, France, Japan, United Kingdom, Russia, India, Germany, and China—totaling about 20 reactors with 400 operating years to date. These previous reactors and current projects are summarized in Table 4.H.1.2 Currently operating test reactors include BOR-60 (Russia), Fast Breeder Test Reactor (FBTR) (India), and China Experimental Fast Reactor (CEFR) (China). The Russian BN-600 demonstration reactor has been operating as a power reactor since 1980.
    [Show full text]
  • The Environmental and Regulatory Aspects of the Breeder Reactor, 2 B.C
    Boston College Environmental Affairs Law Review Volume 2 | Issue 1 Article 13 5-1-1972 The nE vironmental and Regulatory Aspects of the Breeder Reactor William O. Doub Follow this and additional works at: http://lawdigitalcommons.bc.edu/ealr Part of the Energy and Utilities Law Commons, and the Environmental Law Commons Recommended Citation William O. Doub, The Environmental and Regulatory Aspects of the Breeder Reactor, 2 B.C. Envtl. Aff. L. Rev. 237 (1972), http://lawdigitalcommons.bc.edu/ealr/vol2/iss1/13 This Article is brought to you for free and open access by the Law Journals at Digital Commons @ Boston College Law School. It has been accepted for inclusion in Boston College Environmental Affairs Law Review by an authorized editor of Digital Commons @ Boston College Law School. For more information, please contact [email protected]. THE ENVIRONMENTAL AND REGULATORY ASPECTS OF THE BREEDER REACTOR By William O. Doub* On January 14,1972, in Washington, D.C., the Chairman of the Atomic Energy Commission (AEC), Dr. James R. Schlesinger, announced that the Commission had accepted, "as a basis for de­ tailed negotiation, a joint proposal of the Commonwealth Edison Company of Chicago and the Tennessee Valley Authority for the construction and operation of the nation's first demonstration liq­ uid metal fast breeder reactor plant."l The plant, a joint industry­ Government effort, is to be built in Eastern Tennessee at a specific location still to be designated. Work was scheduled to begin within the year. The plant is expected to go on the line by 1980.2 Nationwide attention had been focused on the breeder reactor as a result of the President's Energy Message to Congress on June 4, 1971.
    [Show full text]
  • Molten Plutonium Chloride Fast Breeder Reactor Cooled by Molten Uranium Chloride
    Annals of Nuclear Science and Engineering, Vol. 1, pp. 277 to 281. Pergamon Press 1974. Printed in Northern Ireland MOLTEN PLUTONIUM CHLORIDE FAST BREEDER REACTOR COOLED BY MOLTEN URANIUM CHLORIDE MIECZYSLAW TAUBE and J LIGOU Swiss Federal Institute of Reactor Research, Würenlingen, Switzerland Abstract—A fast breeder reactor of 2000 ~MWt output using molten chlorides as fuel and coolant is discussed. Some of the most significant characteristics are: The liquid fuel contains only PuCl3/NaCl. The coolant is molten UCl3/NaCl and also forms the fertile material along with the blanket system, again UCl3/NaCl: the coolant blanket system is divided into 2 or more independent circuits. The fuel circulates through the core by forced convection; the core is not divided. The thermal stability of the reactor is very good. Power excursions or fuel temperature transients are quickly damped by the phenomena of fuel expansion pushing part of the fissile material out of the critical zone. The loss of coolant accident results in a loss of half (or ⅓, ⅔) of blanket which, without relying on a reactor scram, results in an automatic adjustment of the reactor power level. Corrosion effects form the most difficult problem. Thermodynamic studies suggest the use of molybdenum alloys as structural materials. Breeder reactors differ from other reactor types in that The coolant blanket circuits are in the form of at they are not only power-producing devices but also a least two independent systems: the core vessel is not source of fissile material and therefore should be divided. considered as part of a complex “breeding system” The core is directly connected with: overflow buffer which includes both the power reactor (producing vessel (for thermal expansion of fuel), emergency fuel electricity and heat) and the reprocessing and fuel drainage tank, reprocessing and fuel preparation plant, preparation plant.
    [Show full text]
  • Plutonium Disposition in the BN-800 Fast Reactor: an Assessment of Plutonium Isotopics and Breeding
    Science & Global Security, 22:188–208, 2014 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929882.2014.952578 Plutonium Disposition in the BN-800 Fast Reactor: An Assessment of Plutonium Isotopics and Breeding Moritz Kutt,¨ Friederike Frieß, and Matthias Englert Interdisciplinary Research Group Science, Technology and Security, Technische Universitat¨ Darmstadt, Alexanderstraße, Darmstadt, Germany According to the Plutonium Management and Disposition Agreement, which was signed in 2000 and amended in 2010, Russia and the United States agree to dispose of 34 tons of excess weapon plutonium each. Russia plans to use the plutonium as fuel in its sodium-cooled fast reactors BN-600 and BN-800. This article analyzes BN-800 core models with and without breeding blankets for the plutonium isotopic vector in spent fuel, plutonium production in breeding blankets, breeding ratios for different plutonium concentrations in fuel, and possible annual material throughput. It finds that any spent fuel in the core contains less than 90 wt% plutonium-239, but using breeding blankets the reactor can be configured to be a net producer of plutonium, even with a breeding ratio below one, and that plutonium produced in blankets will be weapon-grade. INTRODUCTION In 1998, U.S. president Bill Clinton and Russian president Boris Yeltsin re- leased a joint statement offering to withdraw 50 metric tons (MT) of plutonium each from their respective military stockpiles.1 It was agreed that this pluto- nium should be rendered unusable for nuclear weapons either by irradiation in existing commercial reactors or by immobilization.2 In 2000, Russia and the United States agreed on the “Plutonium Manage- ment and Disposition Agreement” (PMDA).
    [Show full text]
  • Meimei Li (ANL), Jonathan D
    FY 2016 NEET R&D Award - Investigating Grain Dynamics in Irradiated Materials with High-Energy X-rays PIs: Meimei Li (ANL), Jonathan D. Almer (ANL), Donald W. Brown(ORNL) DOE-NE Cross-cut Coordination Meeting August 16, 2016 Motivation – In situ Multiscale Experiment of Nuclear Reactor Materials with High-Energy X-rays Interstitials, Dislocation Grains, Stress-strain vacancies, segments, twins, behavior solutes, loops, network, phases, SFT, voids, cells, inclusions, bubbles, subgrains, pores, etc. precipitates, etc. etc. LOM SEM TEM High-Energy X-rays 2 Combined In situ High-Energy X-ray Techniques (APS Beamline 1-ID) SAXS detector High-energy, high-brilliance X-rays: • • HR detector Deep penetration • Filters & stop − mm-sized specimens Lab-scale − Suite of sample environments mechanical test • In situ, real-time studies 6m 5.5m 4.5m Very far-field detectors • 3 HR detectors 1m • Trans-rotate for high q-coverage 0 Far-field detectors • Near field-HEDM • 4 GE 2x2k detectors detector • @1m: qmax~25 1/A • Tomography • Center-hole (SAXS) • Conical slit • Lasers 3 In situ Thermal-Mechanical Experiment of Neutron- Irradiated Materials 4 In situ Characterization using 2D X-ray Techniques: Grain-Average Behavior 1 in 1 Diffraction peak shifts revealed load partitioning among phases during deformation Diffraction peak broadening revealed dislocation evolution during deformation SAXS captured void formation and evolution during Voids necking 5 High-Energy Diffraction Microscopy (3D-XRD): Individual Grain Characteristics . Three-dimensional, grain-scale characterization: – Characterization of microstructural and micromechanical response of individual grains within the bulk of a polycrystalline specimen. Near-field (nf-) HEDM (similar to 3D-EBSD): – Sample-detector distance: mm – cm • Grain shape and – Not suitable for in situ study orientation map with complex environments • Detailed GB geometry .
    [Show full text]
  • Unit 3: Nuclear Reactors/Energy Generation
    Unit 3: Nuclear Reactors/Energy Generation Time: Three hours Objectives A. Teacher: 1. To ensure students understand how nuclear energy is generated. 2. To help students learn how a nuclear power plant works. 3. To understand how the NRC regulates commercial nuclear energy. B. At the conclusion of this unit the student should be able to — 1. Describe the fission process. 2. Identify the various kinds of nuclear power plants. 3. Discuss the process of energy generation with nuclear power plants. Investigation and Building Background 1. Introduce term: Students have little knowledge of nuclear reactors and limited understanding of the terminology used in nuclear power plants. Definitions found in dictionaries tend to be vague regarding this specialized language. 2. Resources: 1. Nuclear Power for Energy Generation "Nuclear Reactor Concepts" Workshop Manual, U.S. NRC 2. The Fission Process and Heat Production "Nuclear Reactor Concepts" Workshop Manual, U.S. NRC 3. Boiling-Water Reactor Systems "Nuclear Reactor Concepts" Workshop Manual, U.S. NRC 4. Pressurized-Water Reactor Systems "Nuclear Reactor Concepts" Workshop Manual, U.S. NRC 3. Generalizing: The purpose of a nuclear power plant is to produce or release heat and boil water. It is designed to produce electricity. It should be noted that while there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. a. Vocabulary: Nuclear Power Plants boiling water reactor (BWR) helium pressurized water reactor (PWR) uranium dioxide uranium-235 uranium-238 sodium Questions 1. Is there a nuclear power plant near where you live? What type is it? 2.
    [Show full text]
  • The Regulation of Fusion – a Practical and Innovation-Friendly Approach
    The Regulation of Fusion – A Practical and Innovation-Friendly Approach February 2020 Amy C. Roma and Sachin S. Desai AUTHORS Amy C. Roma Sachin S. Desai Partner, Washington, D.C. Senior Associate, Washington, D.C. T +1 202 637 6831 T +1 202 637 3671 [email protected] [email protected] The authors want to sincerely thank the many stakeholders who provided feedback on this paper, and especially William Regan for his invaluable contributions and review of the technical discussion. TABLE OF CONTENTS I. EXECUTIVE SUMMARY 1 II. THE STATE OF FUSION INNOVATION 3 A) An Introduction to Fusion Energy 3 B) A Rapid Growth in Private-Sector Fusion Innovation 4 III. U.S. REGULATION OF ATOMIC ENERGY - NOT ONE SIZE FITS ALL 7 A) The Foundation of U.S. Nuclear Regulation - The Atomic Energy Act and the NRC 7 B) The Atomic Energy Act Embraces Different Regulations for Different Situations 7 1. NRC Frameworks for Different Safety Cases 8 2. Delegation of Regulatory Authority to States 9 IV. THE REGULATION OF FUSION - A PRACTICAL AND INNOVATION- FRIENDLY APPROACH 10 A) Fusion Regulation Comes to the Fore, Raising Key Questions 10 B) A Regulatory Proposal That Recognizes the Safety Case of Fusion and the Needs of Fusion Innovators 11 1. Near-Term: Regulation of Fusion Under the Part 30 Framework is Appropriate Through Development and Demonstration 11 2. Long-Term: The NRC Should Develop an Independent Regulatory Framework for Fusion at Commercial Scale, Not Adopt a Fission Framework 12 V. CONCLUSION 14 1 Hogan Lovells I. EXECUTIVE SUMMARY Fusion, the process that powers the Sun, has long been seen Most fusion technologies are already regulated by the NRC as the “holy grail” of energy production.
    [Show full text]