Expansive Mineral Growth and Concrete Deterioration: a Microstructural and Microanalytical Study Hyomin Lee Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Expansive Mineral Growth and Concrete Deterioration: a Microstructural and Microanalytical Study Hyomin Lee Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Expansive mineral growth and concrete deterioration: a microstructural and microanalytical study Hyomin Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Geochemistry Commons, Geology Commons, and the Geotechnical Engineering Commons Recommended Citation Lee, Hyomin, "Expansive mineral growth and concrete deterioration: a microstructural and microanalytical study " (1999). Retrospective Theses and Dissertations. 12583. https://lib.dr.iastate.edu/rtd/12583 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced fix>m the microfilm master. UMI films the text direct^ fix}m the origmal or copy submitted. Thus, some thesis and dissertation copies are in typewriter &ce, while others may be from any type of computer printer. The quality of this reproduction is dependent apon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adverse^ affect rq>roduction. In the unlikely event that the author did not send UMI a complete manuscript and there are mis^g pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, b^jnning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been rq)roduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI ABdl&HowdHnfimiBUionConyany 300 NoithZceb Road. Ann Aiixv MI 48106-1346 USA 313/761-4700 800/521-0600 Expansive mineral growth and concrete deterioration: A microstructural and microanatytical study by Hyomin Lee A dissertation submitted to the graduate faculty in partial fidfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major Geology Major Professor Robert D. Cody Iowa State University Ames, Iowa 1999 XJMX Number: 9924737 UMI Microform 9924737 Copyright 1999, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying mider Title 17, United States Code. UMI 300 North Zeeb Road Ann Ariwr, MI 48103 u Graduate College Iowa State University This is to certify that the Doctoral dissertation of Hyomin Lee has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Coinimttee Member Signature was redacted for privacy. Committee Member Signature was redacted for privacy. Committee Member Signature was redacted for privacy. Committee Member Signature was redacted for privacy. Major Professor Signature was redacted for privacy. For the Major Signature was redacted for privacy. Ul TABLE OF CONTENTS ABSTRACT vii GENERAL INTRODUCTION 1 Expansive Mineral Growth and E>eterioration of Iowa Highway Concrete Deterioration 1 The Role of Deicer in Concrete Deterioration 2 Calcium Magnesium Acetate (CMA) as an Alternative Deicer 3 Effect of Crystallization Inhibitors on the Formation of Secondary Mineral Growth in Concrete. 3 RESEARCH OBJECTIVES 5 PART L EXPANSIVE MINERALS FEATURES OF IOWA HIGHWAY CONCRETES 7 INTRODUCTION 8 METHODS OF STUDY 10 Collection of Highway Concrete Samples 10 General Procedures and Instrumentation 10 CHARACTERISTICS OF IOWA HIGHWAY CONCRETE SAMPLES 13 Durable and Non-Durable Concretes 13 Dolomite Coarse Aggregate Characteristics 13 Crystallinity and Crystal Size 13 Reaction Rim Development 14 Chemical Composition 15 Pyrite Inclusions 15 Fine Aggregate Characteristics 17 Cement Paste Characteristics 18 Chemical Composition of Cement Paste 18 Air-Entrainment Voids 20 RESULTS AND DISCUSSION 21 Brucite Occurrence in Iowa Concretes 21 Forms and Distribution 21 Brucite Formation in Iowa Concretes 23 Mechanisms of Brucite Formation in Iowa Concretes 25 iv Ettringite Occurrence in Iowa Concretes 27 Forms and Distribution 27 Relationship of Ettringite to Pyrite Inclusions 28 Mechanisms of Ettringite Formation 32 EXPANSIVE MECHANISMS AND IOWA CONCRETE DETERIORATION 40 Cement-Aggregate Expansive Reactions 40 Alkali-Carbonate Reactions 40 Alkali-Silica Reactions 41 Alkali-Silicate Reactions 41 Brucite Expansive Reactions 42 E^ansion Mechanisms 42 Brucite-hiduced Expansion in Iowa Concrete 43 Ettringite Expansive Reactions 44 Expansion Mechanisms 44 Ettringite-Ihduced Expansion in Iowa Concretes 47 SUMMARY AND CONCLUSIONS 49 PART n. EXPERIMENTAL DETERIORATION OF IOWA HIGHWAY CONCRETE 54 INTRODUCTION 55 EXPERIMENTAL METHODS 56 Wet/Dry (W/D) Experiments 56 Freeze/Thaw (F/T) Experiments 57 Termination of Experiments and Thin Sectioning 57 RESULTS AND DISCUSSION 59 Relative Aggressiveness of Salt Solutions 59 Calcium Magnesium Acetate 59 Sodium Sulfate 59 Magnesium Chloride 61 Calcium Chloride 61 Sodium Chloride and Water 61 Effects on Concrete Samples 62 Secondary Mineral Formation 62 Effects of Water 64 Effects of Calcium Chloride Solutions 64 Effects of Magnesium Chloride Solutions 66 Effects of Sodium Chloride Solutions 69 Effects of Sodium Sul&te Solutions 70 Effects of Calcium Magnesium Acetate (CMA) Solutions 71 V Role of Calciiun and Magnesium in CMA 73 Effects of Magnesium Acetate Solutions 73 Effects of Calcium Acetate Solutions 74 Effect of Ca/Mg ratios in CMA induced deterioration 75 Stability of Expansive Minerals 79 SUMMARY AND CONCLUSIONS 81 PART. in. THE EFFECT OF CRYSTALLIZATION INHIBITOR ON EXPANSIVE MINERAL GROWTH AND CONCRETE DETERIORATION 83 INTRODUCTION 84 CRYSTALLIZATION INHIBmON 87 EXPERIMENTAL MATERIALS AND METHODS 89 Selection of Crystallization Inhibitors 89 Experimental Methods 89 Analytical Methods and Instrumentation 95 RESULTS AND DISCUSSION 96 Effects of Sodium Sulfate and Crystallization Inhibitor on Ettringite Formation 96 Experimentally Induced Concrete E^qpansion on Sulfate Experiments 97 Effect of Crystallization Inhibitors on Expansion 100 Effects of Crystallization Inhibitors on Ettringite Formation 106 Effects of Crystallization Inhibitor on CMA-induced Deterioration 122 SUMMARY AND CONCLUSIONS 127 GENERAL CONCLUSIONS 132 RECOMMENDATIONS 135 vi APPENDIX A. ADDITIONAL FIGURES (PART I)- EXPANSIVE GROWTH IN IOWA HIGHWAY CONCRETE SAMPLES 138 APPENDIX B. ADDITIONAL FIGURES (PART II)- EXPERIMENTALLY ALTERED IOWA HIGHWAY CONCRETE SAMPLES 179 APPENDIX C. ADDITIONAL FIGURES (PART HI)- CRYSTALLIZATION INHIBITOR TREATED CONCRETE SAMPLES 246 APPENDIX D. ETTINGITE STRUCTURE 263 APPENDIX E. EXPANSION MEASUREMENT DATA 267 REFERENCES 277 ACKNOWLEDGMENTS 292 vii ABSTRACT In order to evaluate the role of newly-foimed minerals in the premature deterioration of highway concrete, a three-phase study was undertaken. In the first phase, petrographic and SEM/EDAX analyses were performed to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken fit)m Iowa hi^ways that showed premature deterioration. In the second phase, experimental simulations of environmental changes in highway concrete after applying different deicer chemicals were conducted to evaluate the role of deicers in premature deterioration. In the third phase, experiments were done to evaluate whether crystallization inhibitors can reduce damage and the growth of secondary minerals in concrete and to help understand the mechanism of deterioration by secondary mineral growth in concrete. In the first phase of study, it was evidenced that two major expansive minerals, ettringite and brucite, were responsible for premature deterioration. Severe expansion cracking of cement paste was often closely associated with ettringite locations, and strongly suggests that secondary ettringite was a major cause. Brucite forms in cement paste of concretes containing reactive dolomite aggregate via dedolomitization reactions. No cracking was observed to be spatially associated with brucite, but expansion stresses associated with its growth at innumerable microlocations might be relieved by cracking at weaker locations in the concrete. Deicer salts cause characteristic concrete deterioration by altering dedolomitization rims at the coarse-aggregate paste inter&ce, altering cement paste and/or fomiing new secondary minerals. Magnesium in deicer solutions caused the most severe paste viii deterioiadon by forming non-cementitious magnesium silicate hydrate and bnicite. Chloride in deicer solutions promotes decalcification of paste and alters ettringite to chloroaluminate. CMA and Mg-acetate produced the most deleterious effects on concrete, with Ca-acetate being much less aggressive. In order to use CMA as an alternative deicer and to prevent premature deterioration, it is recommended that it possess a high Ca/Mg ratio. Three types of commercially inhibitor chemicals, polyphosphonate, polyacrylate, and phosphate ester,
Recommended publications
  • Microstructural and Compressive Strength Analysis for Cement Mortar with Industrial Waste Materials
    Available online at www.CivileJournal.org Civil Engineering Journal Vol. 6, No. 5, May, 2020 Microstructural and Compressive Strength Analysis for Cement Mortar with Industrial Waste Materials Zahraa Fakhri Jawad a, Rusul Jaber Ghayyib a, Awham Jumah Salman a* a Al-Furat Al-Awsat Technical University, Najaf, Kufa, Iraq. Received 06 December 2019; Accepted 02 March 2020 Abstract Cement production uses large quantities of natural resources and contributes to the release of CO2. In order to treat the environmental effects related to cement manufacturing, there is a need to improve alternative binders to make concrete. Accordingly, extensive study is ongoing into the utilization of cement replacements, using many waste materials and industrial. This paper introduces the results of experimental investigations upon the mortar study with the partial cement replacement. Fly ash, silica fume and glass powder were used as a partial replacement, and cement was replaced by 0%, 1%, 1.5%, 3% and 5% of each replacement by the weight. Compressive strength test was conducted upon specimens at the age of 7 and 28 days. Microstructural characteristic of the modified mortar was done through the scanning electron microscope (SEM) vision, and X-ray diffraction (XRD) analysis was carried out for mixes with different replacements. The tests results were compared with the control mix. The results manifested that all replacements present the development of strength; this improvement was less in the early ages and raised at the higher ages in comparison with the control specimens. Microstructural analysis showed the formation of hydration compounds in mortar paste for each replacement. This study concluded that the strength significantly improved by adding 5% of silica fume compared with fly ash and glass powder.
    [Show full text]
  • Delayed Ettringite Formation
    Ettringite Formation and the Performance of Concrete In the mid-1990’s, several cases of premature deterioration of concrete pavements and precast members gained notoriety because of uncertainty over the cause of their distress. Because of the unexplained and complex nature of several of these cases, considerable debate and controversy have arisen in the research and consulting community. To a great extent, this has led to a misperception that the problems are more prevalent than actual case studies would indicate. However, irrespective of the fact that cases of premature deterioration are limited, it is essential to address those that have occurred and provide practical, technically sound solutions so that users can confidently specify concrete in their structures. Central to the debate has been the effect of a compound known as ettringite. The objectives of this paper are: Fig. 1. Portland cements are manufactured by a process that combines sources of lime (such as limestone), silica and • to define ettringite and its form and presence in concrete, alumina (such as clay), and iron oxide (such as iron ore). Appropriately proportioned mixtures of these raw materials • to respond to questions about the observed problems and the are finely ground and then heated in a rotary kiln at high various deterioration mechanisms that have been proposed, and temperatures, about 1450 °C (2640 °F), to form cement compounds. The product of this process is called clinker • to provide some recommendations on designing for durable (nodules at right in above photo). After cooling, the clinker is concrete. interground with about 5% of one or more of the forms of Because many of the questions raised relate to cement character- calcium sulfate (gypsum shown at left in photo) to form portland cement.
    [Show full text]
  • Thermodynamics of Cement Hydration
    UNIVERSITY OF ABERDEEN DEPARTMENT OF CHEMISTRY Thermodynamics of Cement Hydration by Thomas Matschei Dipl.-Ing., Bauhaus University Weimar A Thesis presented for the degree of Doctor of Philosophy at the University of Aberdeen Aberdeen, 06 December 2007 Declaration This Thesis is submitted to the University of Aberdeen for the degree of Doctor of Philosophy. It is a record of the research carried out by the author, under the supervision of Professor F.P. Glasser. It has not been submitted for any previous degree or award, and is believed to be wholly original, except where due acknowledgement is made. Thomas Matschei Aberdeen, December 2007 Abstract 3 Abstract The application of thermodynamic methods to cement science is not new. About 80 years ago, Bogue wrote a series of equations describing the relationship between clinker raw meal chemical composition and the mineralogy of the finished clinker. These enabled the amounts of minerals to be calculated from a bulk chemical composition. Fundamental to the equations was a precise description of the high temperature equilibrium achieved during clinkering. Bogue admitted four oxide components into the calculation; lime, alumina, silica and ferric oxide and assumed that equilibrium was attained (or very nearly attained) during clinkering. This approach, which is, with modifications, still a widely used tool to quantify cement clinkering, was one of the main motivations of this work. Thus the overall aim of this Thesis is to provide a generic toolkit, which enables the quantification of cement hydration. The use of thermodynamic methods in cement hydration was often doubted, as the water-cement system was considered to be too complex.
    [Show full text]
  • The Influence Mechanism of Ettringite Crystals and Microstructure
    materials Article The Influence Mechanism of Ettringite Crystals and Microstructure Characteristics on the Strength of Calcium-Based Stabilized Soil Youmin Han 1,2,3 , Junwu Xia 1,3,* , Hongfei Chang 1 and Jun Xu 4,5 1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Daxue Road, Xuzhou 221116, China; [email protected] (Y.H.); [email protected] (H.C.) 2 School of Architecture and Civil Engineering, Anhui Polytechnic University, Beijing Road, Wuhu 241000, China 3 Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology, Xueyuan Road, Xuzhou 221116, China 4 School of Civil Engineering and Architecture, Jiangsu University of Science and Technology, Changhui Road, Zhenjiang 212100, China; [email protected] 5 School of Materials Science and Engineering, Southeast University, Southeast University Road, Nanjing 211189, China * Correspondence: [email protected] or [email protected] Abstract: To reveal the influence mechanism of ettringite (AFt) crystals and microstructure character- istics on the strength of calcium-based stabilized soil, the strengths and microscopic properties of seven groups of stabilized soil samples were studied systematically through unconfined compressive strength, scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TG), and Fourier transform infrared spectroscopy (FTIR) testing methods. The results indicate that the strength of the cement-stabilized soil is relatively high because abundant calcium silicate hydrate (CSH) gels Citation: Han, Y.; Xia, J.; Chang, H.; coat the outer surface of soil particles to cement together. For the cement–gypsum-stabilized soil, Xu, J. The Influence Mechanism of Ettringite Crystals and superabundant thick and long AFt crystals make the pores in soil particles larger, and the sample Microstructure Characteristics on the becomes looser, resulting in lower strength than that of the cement-stabilized soil.
    [Show full text]
  • Brownmillerite Ca2(Al, Fe )2O5 C 2001-2005 Mineral Data Publishing, Version 1
    3+ Brownmillerite Ca2(Al, Fe )2O5 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: mm2. As square platelets, to about 60 µm; massive. Physical Properties: Hardness = n.d. D(meas.) = 3.76 D(calc.) = 3.68–3.73 Optical Properties: Semitransparent. Color: Reddish brown. Optical Class: Biaxial (–). Pleochroism: Distinct; X = Y = yellow-brown; Z = dark brown. Orientation: Y and Z lie in the plane of the platelets; extinction in that plane is diagonal. α = < 2.02 β = > 2.02 γ = > 2.02 2V(meas.) = n.d. Cell Data: Space Group: Ibm2. a = 5.584(5) b = 14.60(1) c = 5.374(5) Z = 2 X-ray Powder Pattern: Near Mayen, Germany. 2.65 (vs), 7.19 (s), 2.78 (s), 1.93 (s), 2.05 (ms), 3.65 (m), 1.82 (m) Chemistry: (1) (2) (3) TiO2 1.5 1.9 Al2O3 17.2 22.3 13.1 Fe2O3 30.5 27.6 41.9 Cr2O3 0.1 n.d. MgO n.d. n.d. CaO 46.2 44.8 43.7 insol. 4.0 LOI 0.5 Total 94.4 100.3 100.6 (1) Near Mayen, Germany; by semiquantitative spectroscopy. (2) Hatrurim Formation, Israel; corresponds to Ca1.99(Al1.09Fe0.86Ti0.05)Σ=2.00O5. (3) Do.; corresponds to Ca1.95(Fe1.31Al0.64 Ti0.06)Σ=2.01O5. Occurrence: In thermally metamorphosed limestone blocks included in volcanic rocks (near Mayen, Germany); in high-temperature, thermally metamorphosed, impure limestones (Hatrurim Formation, Israel). Association: Calcite, ettringite, wollastonite, larnite, mayenite, gehlenite, diopside, pyrrhotite, grossular, spinel, afwillite, jennite, portlandite, jasmundite (near Mayen, Germany); melilite, mayenite, wollastonite, kalsilite, corundum (Kl¨och, Austria); spurrite, larnite, mayenite (Hatrurim Formation, Israel).
    [Show full text]
  • How to Make Concrete More Sustainable Harald Justnes1
    Journal of Advanced Concrete Technology Vol. 13, 147-154, March 2015 / Copyright © 2015 Japan Concrete Institute 147 Scientific paper How to Make Concrete More Sustainable Harald Justnes1 A selected paper of ICCS13, Tokyo 2013. Received 12 November 2013, accepted 16 February 2015 doi:10.3151/jact.13.147 Abstract Production of cement is ranking 3rd in causes of man-made carbon dioxide emissions world-wide. Thus, in order to make concrete more sustainable one may work along one or more of the following routes; 1) Replacing cement in con- crete with larger amounts of supplementary cementing materials (SCMs) than usual, 2) Replacing cement in concrete with combinations of SCMs leading to synergic reactions enhancing strength, 3) Producing leaner concrete with less cement per cubic meter utilizing plasticizers and 4) Making concrete with local aggregate susceptible to alkali silica reaction (ASR) by using cement replacements, thus avoiding long transport of non-reactive aggregate. 1 Introduction SCMs, also uncommon ones like calcined marl 2. Replacing cement in concrete with combinations of The cement industry world-wide is calculated to bring SCMs leading to synergic reactions enhancing about 5-8% of the total global anthropogenic carbon strength dioxide (CO2) emissions. The general estimate is about 3. Producing leaner concrete with less cement per cubic 1 tonne of CO2 emission per tonne clinker produced, if meter utilizing plasticizers. fossil fuel is used and no measures are taken to reduce it. 4. Making concrete with local aggregate susceptible to The 3rd rank is not because cement is such a bad mate- alkali silica reaction (ASR) by using cement re- rial with respect to CO2 emissions, but owing to the fact placements, thus avoiding long transport of non- that it is so widely used to construct the infrastructure reactive aggregate and buildings of modern society as we know it.
    [Show full text]
  • Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior
    materials Article Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior Ursula Pott 1, Cordula Jakob 2, Daniel Jansen 2, Jürgen Neubauer 2 and Dietmar Stephan 1,* 1 Department of Civil Engineering, Building Materials and Construction Chemistry, Technische Universität Berlin, 13355 Berlin, Germany; [email protected] 2 Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-University, 91054 Erlangen, Germany; [email protected] (C.J.); [email protected] (D.J.); [email protected] (J.N.) * Correspondence: [email protected] Received: 2 December 2019; Accepted: 18 February 2020; Published: 21 February 2020 Abstract: The rheological behavior of cement paste and the improvement of its flowability takes center stage in many research projects. An improved flowability can be achieved by the addition of superplasticizers (SP), such as polycarboxylate ethers (PCE). In order to be able to use these PCEs effectively and in a variety of ways and to make them resistant to changes in the environment, it is crucial to understand the influence of SPs on cement hydration. For that reason, the topic of this paper was the incompatibility of a specific SP and an ordinary Portland cement (OPC). The incompatible behavior was analyzed using rheological tests, such as the spread flow test and penetration test, and the behavior was compared by means of an ultrasound technique and explained by the phase content measured by in-situ X-ray diffraction (XRD) the heat evolution measured by calorimetry, and scanning electron microscope (SEM) images. We showed that the addition of the SP in a high dosage led to a prevention of the passivation of the most reactive and aluminum-containing clinker phases, aluminate and brownmillerite.
    [Show full text]
  • Evolution of Geochemical Conditions in SFL 3-5
    SE0000146 R-99-15 Evolution of geochemical conditions in SFL 3-5 Fred Karlsson Svensk Kambranslehantering AB Maria Lindgren, Kristina Skagius, Marie Wiborgh Kemakta Konsult AB Ingemar Engkvist Barseback Kraft AB December 1999 Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 J> ISSN 1402-3091 SKB Rapport R-99-15 Evolution of geochemical conditions in SFL 3-5 Fred Karlsson Svensk Karnbranslehantering AB Maria Lindgren, Kristina Skagius, Marie Wiborgh Kemakta Konsult AB Ingemar Engkvist Barseback Kraft AB December 1999 Keywords: geochemical conditions, deep repository, near-field chemistry, concrete, evolution, LILW. Abstract The evolution of geochemical conditions in the repository for long-lived low- and intermediate-level waste, SFL 3-5, and in the vicinity of the repository are important when predicting the retention of radionuclides and the long-term stability of engineered barriers. In this study the initial conditions at different repository sites at 300 - 400 m depth, the influence of repository construction and operation, the expected conditions after repository closure and saturation, and the evolution in a long-term perspective are discussed. Groundwaters that are found at these depths have near-neutral pH and are reducing in character, but the composition can vary from saline to non-saline water. The water chemistry in the near-field will mainly be influenced by the composition of the groundwater and by the large amounts of cementitious material that can be found in the repository.
    [Show full text]
  • Crystal Structure of the High-Pressure Phase of Calcium Hydroxide, Portlandite: in Situ Powder and Single-Crystal X-Ray Diffraction Study
    American Mineralogist, Volume 98, pages 1421–1428, 2013 Crystal structure of the high-pressure phase of calcium hydroxide, portlandite: In situ powder and single-crystal X-ray diffraction study RIKO IIZUKA,1,2,3,* TAKEHIKO YAGI,1,3 KAZUKI KOMATSU,2 HIROTADA GOTOU,1 TAKU TSUCHIYA,3 KEIJI KUSABA,4 AND HIROYUKI KAGI2 1Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8581, Japan 2Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan 3Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan 4Department of Materials Science, Nagoya University, Nagoya, 464-8603, Japan ABSTRACT The crystal structure of a high-pressure phase of calcium hydroxide, Ca(OH)2 (portlandite), was clarified for the first time using the combination of in situ single-crystal and powder X-ray diffraction measurements at high pressure and room temperature. A diamond-anvil cell with a wide opening angle and cell-assembly was improved for single-crystal X-ray diffraction experiments, which allowed us to successfully observe Bragg reflections in a wide range of reciprocal space. The transition occurred at 6 GPa and the crystal structure of the high-pressure phase was determined to be monoclinic at 8.9 GPa and room temperature [I121; a = 5.8882(10), b = 6.8408(9), c = 8.9334(15) Å, β = 104.798(15)°]. The transition involved a decrease in molar volume by approximately 5.8%. A comparison of the structures of the low- and high-pressure phases indicates that the transition occurs by a shift of CaO6 octahedral layers in the a-b plane along the a-axis, accompanied by up-and-down displacements of Ca atoms from the a-b plane.
    [Show full text]
  • Raman Spectroscopy and Single-Crystal High-Temperature Investigations of Bentorite, Ca6cr2(SO4)3(OH)12·26H2O
    minerals Article Raman Spectroscopy and Single-Crystal High-Temperature Investigations of Bentorite, Ca6Cr2(SO4)3(OH)12·26H2O Rafał Juroszek 1,* , Biljana Krüger 2 , Irina Galuskina 1 , Hannes Krüger 2 , Martina Tribus 2 and Christian Kürsten 2 1 Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, B˛edzi´nska60, 41-205 Sosnowiec, Poland; [email protected] 2 Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria; [email protected] (B.K.); [email protected] (H.K.); [email protected] (M.T.); [email protected] (C.K.) * Correspondence: [email protected]; Tel.: +48-516-491-438 Received: 28 November 2019; Accepted: 27 December 2019; Published: 30 December 2019 Abstract: The crystal structure of bentorite, ideally Ca Cr (SO ) (OH) 26H O, a Cr3+ analogue of 6 2 4 3 12· 2 ettringite, is for the first time investigated using X-ray single crystal diffraction. Bentorite crystals of suitable quality were found in the Arad Stone Quarry within the pyrometamorphic rock of the Hatrurim Complex (Mottled Zone). The preliminary semi-quantitative data on the bentorite composition obtained by SEM-EDS show that the average Cr/(Cr + Al) ratio of this sample is >0.8. Bentorite crystallizes in space group P31c, with a = b = 11.1927(5) Å, c =21.7121(10) Å, V = 2355.60(18) Å3, and Z = 2. The crystal structure is refined, including the hydrogen atom positions, to an agreement index R1 = 3.88%. The bentorite crystal chemical formula is Ca (Cr Al ) [(SO ) (CO ) ] (OH) ~25.75H O.
    [Show full text]
  • Novel Approach for Suppression of Ettringite Formation in Sulfate
    applied sciences Article Novel Approach for Suppression of Ettringite Formation in Sulfate-Bearing Soil Using Blends of Nano-Magnesium Oxide, Ground Granulated Blast-Furnace Slag and Rice Husk Ash Khaled Ibrahim Azarroug Ehwailat, Mohd Ashraf Mohamad Ismail * and Ali Muftah Abdussalam Ezreig School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Seberang Prai Selatan, Pulau Pinang, Malaysia; [email protected] (K.I.A.E.); [email protected] (A.M.A.E.) * Correspondence: [email protected] Abstract: The treatment of sulfate-bearing soil with calcium-based stabilizers such as cement or lime often results in ettringite formation, consequently leading to swelling and strength deterioration. Ettringite formation has negative environmental and economic effects on various civil engineering structures. This study was conducted to investigate the use of different materials (nano–magnesium oxide (M), ground granulated blast-furnace slag (GGBS), and rice husk ash (RHA)) for gypseous soil stabilization to prevent ettringite formation. Various tests were performed, including flexural strength, unconfined compression strength, linear expansion, and microstructure analysis (SEM/EDX), on lime (L)-, (M)-, (M-RHA)-, (M-GGBS)-, and (M-GGBS-RHA)-stabilized gypseous soil samples to determine Citation: Ehwailat, K.I.A.; Ismail, their properties. The results indicated that the swelling rates of the soil samples mixed with 20% M.A.M.; Ezreig, A.M.A. Novel M-RHA, M-GGBS, and M-GGBS-RHA binders were much lower (less than 0.01% of volume change) Approach for Suppression of than those of the soil samples mixed with 10% and 20% lime-stabilized binders after a curing period Ettringite Formation in of 90 days.
    [Show full text]
  • Calcium-Aluminum-Silicate-Hydrate “
    Cent. Eur. J. Geosci. • 2(2) • 2010 • 175-187 DOI: 10.2478/v10085-010-0007-6 Central European Journal of Geosciences Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy Research Article F. Stoppa1∗, F. Scordari2,E.Mesto2, V.V. Sharygin3, G. Bortolozzi4 1 Dipartimento di Scienze della Terra, Università G. d’Annunzio, Chieti, Italy 2 Dipartimento Geomineralogico, Università di Bari, Bari, Italy 3 Sobolev V.S. Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia 4 Via Dogali, 20, 31100-Treviso Received 26 January 2010; accepted 8 April 2010 Abstract: Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate- alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite- afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) – “cement” phases – i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon- dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique.
    [Show full text]