Divertor Tungsten Tile Melting and Its Effect on Core Plasma Performance

Total Page:16

File Type:pdf, Size:1020Kb

Divertor Tungsten Tile Melting and Its Effect on Core Plasma Performance PSFC/JA-12-42 Divertor Tungsten Tile Melting and its Effect on Core Plasma Performance 1 2 1 1 Lipschultz, B ; Coenen, JW , Barnard, HS , Howard, NT , Reinke, 1 1 1 ML , Whyte, D.G .; Wright, GM 1 M.I.T. Plasma Science & Fusion Center, Cambridge, MA, USA. 2Institute for Energy Research - Plasma Physics, Forschungszentrum Juelich GmbH, Juelich, Germany October 2012 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 USA This work was supported by the U.S. Department of Energy, Grant No. DE-FC02- 99ER54512. Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted. Submitted for publication to the Journal of Nuclear Materials PSFC/JA-12-42 Divertor Tungsten Tile Melting and its Effect on Core Plasma Performance * B Lipschultz1, J W Coenen2, H S Barnard1, N T Howard1, M L Reinke1, D G Whyte1 and G M Wright1 1M.I.T. Plasma Science & Fusion Center, 175 Albany St, Cambridge, MA, 02445, USA. 2Institute for Energy Research - Plasma Physics, Forschungszentrum Juelich GmbH, Ass. EURATOM-FZJ, Trilateral Euregio Cluster, Juelich, Germany E-mail: [email protected] Abstract: For the 2007 and 2008 run campaigns Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; Tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 grams of tungsten was lost from the tile over ~ 100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented. PACS: 52.25.Vy, 52.55.Rk, 52.40.Hf, 52.55.Fa *Work supported by US DoE Cooperative Agreement No. DE-FC02-99ER54512. 1. Introduction Tungsten has been the obvious choice for reactor plasma facing components (PFCs) due to its high melting temperature, low tritium retention, relatively low nuclear activation, and low sputtering erosion rate ([1] and references therein). This led early limiter tokamaks such as PLT [2] and Alcator A [3] to use tungsten and molybdenum (similar refractory metal) for PFCs. The high core radiation levels in PLT were enough that most tokamaks, other than Alcator C[4], FTU[5], and Alcator C-Mod [6] (the first diverted tokamak with high-Z PFCs), switched to carbon PFCs. As we move towards the operation of ITER, and consider the reactor goal beyond that as well, the development of routine operation with tungsten PFCs has become of more widespread interest amongst both limiter [7] and diverted [7-9] tokamaks. Several aspects of tungsten’s compatibility with reactor operation are a serious concern – nuclear damage leading to degradation of material properties and tritium trap site production deep with the material, and the risk posed by melting to reactor operation. The latter risk is both due to enhanced levels of tungsten in the core and to degradation of material properties (PFC and coolant failure). A number of aspects of tungsten melting have been the focus of recent tokamak studies [10-12]. Those works have clearly explored and documented the dynamics of melting with resultant launching of tungsten droplets into plasmas as well as the effects on the tungsten material properties. We report the experience with melted tungsten tiles in Alcator C-Mod which complements those works with further information on the effects on operation, droplet movement and the possibility for melt layer ‘healing’. 2. Background Prior to the 2007 run campaign a full toroidal row of solid tungsten tiles (Figure 1) were installed in the outer divertor of Alcator C-Mod in the region of the strike point. Each of the 120 tiles in the row was made up of 8 tungsten lamellae, each lamella 4 mm thick, held together with a TZM bolt. During the 2007 and 2008 run campaigns over 3000 tokamak discharges were made (roughly 4000 seconds of divertor operation) with no discernible signature of tungsten in the core plasma; The strongest tungsten line in the spectral range of our McPherson VUV spectrometer (W XXXII, 132 Angstroms), described elsewhere [13], is not resolvable from an iron line at roughly the same wavelength except when smaller, nearby tungsten lines are evident[14]. The W/Fe line was weak and the smaller lines were absent during the 2007-2008 period and thus not very useful as a quantitative measure of tungsten radiation at such levels. Instead, the 2007-2008 tungsten concentration was estimated using the total radiated power and contributions from all major radiators (molybdenum from other tiles, Ar used for core rotation measurements) for high- power (4MW ICRF) H-mode discharges. This gives an upper bound of the 2007-2008 W concentration of ~ 1-2x10-5. For reference, molybdenum, which is used for PFCs in the rest of the divertor targets and limiters, typically dominates core impurity radiation. Studies indicated that the dominant source of Mo reaching the core plasma was from the outer limiters and top of the outer divertor due to ICRF-enhanced sheaths and resultant sputtering [15-17] with core Mo concentrations in the range 10-5 to 10-3. During the vacuum break following the 2008 run campaign a poloidal set of molybdenum tiles at a single toroidal location were removed from the inner and outer divertors to study the material migration of W away from the one outer divertor toroidal row due to sputtering erosion [18]. When the tiles were restored to the divertor (along with W tiles) before the 2009 campaign, the tungsten tiles appear to have not been torqued properly – the probable reason for their loosening during the run period and thus the melting described herein. 3. Characterization of the melt effects and characteristics During the 2009 run campaign startup period, as the ICRF antennas were being conditioned to deliver increased power, the average disruptivity was ~9-10%, similar to the previous campaign. The disruptivity abruptly increased concurrent with the start of highest ICRF power (4-5 MW). Only two of the first 12 discharges (see Figure 2) survived until current rampdown at 1.5 seconds – what we consider a full-length discharge. It was clear from core VUV spectral measurements that tungsten was the cause of the disruptions. The working hypothesis quickly formed that a tile had broken or come loose and the following actions were taken: 1) For the 13th-16th discharges of the sequence the plasma magnetic equilibrium was switched from lower- to upper-single null (LSN to USN) such that the single-null strike point was away from the tungsten tiles. As shown in Figure 2 the disruptivity dropped during those discharges. There was a tungsten injection that may have led to the disruption in the USN sequence of discharges. From the 17th discharge through the end of the day (#24) the equilibrium was switched back to LSN with strike point on the tungsten row and the high rate of disruptions returned. Starting with discharge #25 in the sequence (the following day), the strike point was located sufficiently above the row of tungsten tiles that operation could continue and the disruptivity returned close to normal levels. The higher strike point location was generally kept for the remainder of the campaign. At any point when the strike point was lowered back down to the tungsten tile row tungsten injections re-occurred. At this point in the campaign a problem with tungsten tiles had been determined but the location and the exact cause (melting or sputtering) had not been identified, although melting was the most likely candidate process. Examination of the divertor spectroscopic data reveals a clear signature of melting. In the case of sputtering we can predict the ratio of the brightnesses of neutral Mo and W lines in the same spectrum which are each a measure of the local influx of those impurities: The line brightness of the Mo I line (same for W I) can be written as ΓDCB+3*YX = BMoI*SXBX (1) where BX is the measured brightness of either the Mo I (386.4 nm) or W I line (400.9 nm), YX is +3 the sputtering rate for impurity X due to the B ion flux to the surface, CB+3 is the concentration +3 of B in the divertor plasma, SXBX is the inverse photon efficiency [19-21] for either Mo I or W +3 I [22-24], and ΓD the D ion flux to the surface. The use of B as the sputtering impurity is meant only as an approximation for a mix of charge states for B (the most abundant impurity in C-Mod due to boronization) in the divertor plasma and also for some amount of less-dominant impurities. We know from C-Mod experience that the Mo source rate in the divertor cannot be explained by D+ sputtering alone and the Mo influxes are best fit by assuming B+3 as the primary sputtering impurity [25,15]. Such an explanation is supported by mass spectroscopy measurements in the C-Mod far SOL [26] as well as similar analyses of the sputtering of tungsten by carbon in ASDEX-Upgrade [27].
Recommended publications
  • Plasma-Materials and Divertor Options for Fusion
    Plasma-Materials and Divertor Options for Fusion Presented to: National Academy of Sciences Panel A Strategic Plan for U.S. Burning Plasma Research J. Rapp ORNL is managed by UT-Battelle for the US Department of Energy Lifetime of divertor will deterimine fusion reactor availability TF coils Coolant manifold (permanent) Upper ports (modules and coolant) Blanket Cost of modules electricity is 5-6 yrs lifetime proportional 0.6 to (1/A) Central ports (modules) Vacuum vessel 70cm Cool shield (permanent) 30cm Divertor plates (permanent) Lower ports 2 yrs lifetime goal (divertor) Main driver of scheduled maintenance: divertor (and blanket) 2 Juergen Rapp Outline • Plasma-Material Interaction (PMI) challenges • Potential Plasma-Facing Materials (PFMs) and Components (PFCs) • Current status of U.S. PMI research • Facilities needed for the development of PFCs • Strategic elements to accelerate U.S. burning plasma research • A proposed high-level R&D program and roadmap for PMI 3 Juergen Rapp Outline • Plasma-Material Interaction (PMI) challenges • Potential Plasma-Facing Materials (PFMs) and Components (PFCs) • Current status of U.S. PMI research • Facilities needed for the development of PFCs • Strategic elements to accelerate U.S. burning plasma research • A proposed high-level R&D program and roadmap for PMI 4 Juergen Rapp Challenges for materials: fluxes and fluence, temperatures JET ITER FNSF Fusion Reactor 50 x divertor ion fluxes 5000 x divertor ion fluence up to 5 x ion fluence 106 x neutron fluence (1dpa) up to 100 x neutron fluence (150dpa)
    [Show full text]
  • A European Success Story the Joint European Torus
    EFDA JET JETJETJET LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION DEVELOPEMENT AGREEMENT THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA Fusion: the Energy of the Sun If the temperature of a gas is raised above 10,000 °C virtually all of the atoms become ionised and electrons separate from their nuclei. The result is a complete mix of electrons and ions with the sum of all charges being very close to zero as only small charge imbalance is allowed. Thus, the ionised gas remains almost neutral throughout. This constitutes a fourth state of matter called plasma, with a wide range of unique features. D Deuterium 3He Helium 3 The sun, and similar stars, are sphe- Fusion D T Tritium res of plasma composed mainly of Li Lithium hydrogen. The high temperature, 4He Helium 4 3He Energy U Uranium around 15 million °C, is necessary released for the pressure of the plasma to in Fusion T balance the inward gravitational for- ces. Under these conditions it is pos- Li Fission sible for hydrogen nuclei to fuse together and release energy. Nuclear binding energy In a terrestrial system the aim is to 4He U produce the ‘easiest’ fusion reaction Energy released using deuterium and tritium. Even in fission then the rate of fusion reactions becomes large enough only at high JG97.362/4c Atomic mass particle energy. Therefore, when the Dn required nuclear reactions result from the thermal motions of the nuclei, so-called thermonuclear fusion, it is necessary to achieve u • extremely high temperatures, of at least 100 million °C.
    [Show full text]
  • Steady State and Transient Power Handling in JET G.F.Matthews* on Behalf of the JET EFDA Exhaust Physics Task Force and JET EFDA Contributors+ +See Annex of J
    Steady State and Transient Power Handling in JET G.F.Matthews* on behalf of the JET EFDA Exhaust Physics Task Force and JET EFDA Contributors+ +See annex of J. Pamela et al, "Overview of JET Results", Fusion Energy 2002 (Proc. 19th Int. Conf. Lyon, 2002),IAEA, Vienna. *Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon. OX14 3DB,UK. E-mail: [email protected] Abstract. Steady state and transient power deposition profiles have been measured in the JET MIIGB divertor using improved diagnostics techniques involving the use of fast infra-red, thermocouples and Langmuir probe arrays. In unfuelled type I ELMy H-modes a very narrow power profile is observed at the outer target which we associate with the ion channel. Systematic parameter scans have been carried out and our analysis shows that the average power width scaling is consistent with a classical dependence of perpendicular transport in the SOL. Using the fast IR capability the factors such as rise time, broadening, variability and in/out asymmetry have been studied and lead to the conclusion that type I ELMs in ITER may fall just below the material ablation limits. JET disruptions are very different from type I ELMs in that only a small fraction of the thermal energy reaches the divertor and what does arrive is distributed uniformly over the divertor area. This is very different from the current ITER assumption which puts most of the energy from the thermal quench onto the divertor strike points. 1. Introduction The actively cooled divertor target for ITER has been tested up to a surface power loading of 25MWm-2 but the planned operating point is around 10MWm-2 to allow for excursions.
    [Show full text]
  • The Pumped Divertor the NEW PHASE of JET B.E
    The Pumped Divertor THE NEW PHASE OF JET B.E. Keen and M.L. Watkins and the JET Team JET Joint Undertaking, Abingdon, Oxford, UK Associate Member of EPS The pumped divertor experiment, in demonstrating before full deuterium-tritium operation an effective method of impurity control, aims to provide essential design data for a Next Step tokamak fusion device. The basic principle of the fusion pro­ Switzerland and Sweden. By mid-1983, by careful design of the targets and speci­ cess is the fusing of light nuclei to form the construction of JET, its power supplies fic operational techniques, but is limited, heavier ones and the accompanying re­ and buildings were completed on sche­ ultimately, by an unacceptably high influx lease of substantial energy. For a fusion dule and broadly to budget and the prog­ of impurities. The fourth area of work had reactor, there are several possible fusion ramme started. been started by earlier studies of energetic reactions, but the one that is easiest to JET is the largest project in the coordi­ particles produced as fusion products or achieve is that between the deuterium and nated programme of EURATOM, whose by ion cyclotron resonance heating tritium isotopes of hydrogen. This D-T fusion programme is designed to lead ulti­ (ICRH). It has now been addressed further reaction is : mately to the construction of an energy by the first tokamak plasma experiments D + T → 4He + neutrons + 17.6 MeV. producing reactor. Its strategy is based on in D-T mixtures. These results are presen­ At the temperatures needed for this reac­ the sequential construction of major ap­ ted briefly in the following sections.
    [Show full text]
  • Lyra' Divertor
    ENERGY AND PARTICLE CONTROL CHARACTERISTICS OF THE ASDEX UPGRADE `LYRA' DIVERTOR M. Kaufmann, H-S. Bosch, A. Herrmann, A. Kallenbach, K. Borrass, A. Carlson, D. Coster, J.C. Fuchs, J. Gafert, K. Lackner, J. Neuhauser, R. Schneider, J. Schweinzer, W. Suttrop, W. Ullrich, U. Wenzel, and ASDEX Upgrade team Max-Planck-Institut fÈurPlasmaphysik, EURATOM-IPP Association, Garching und Berlin, Germany Abstract In 1997 the new `LYRA' divertor went into operation at ASDEX Upgrade and the neutral beam heating power was increased to 20 MW by installation of a second injector. This leads to the relatively high value of P/R of 12 MW/m. It has been shown that the ASDEX Upgrade LYRA divertor is capable of handling such high heating powers. Mea- surements presented in this paper reveal a reduction of the maximum heat ¯ux in the LYRA divertor by more than a factor of two compared to the open Divertor I. This reduction is caused by radiative losses inside the divertor region. Carbon radiation cools the divertor plasma down to a few eV where hydrogen radiation losses become signi®cant. They are increased due to an effective re¯ection of neutrals into the hot separatrix region. B2-Eirene modelling of the performed experiments supports the experimental ®ndings and re®nes the understanding of loss processes in the divertor region. 1. INTRODUCTION The width of the scrape-off layer (SOL) does not necessarily increase in proportion to the size of the device. This poses severe problems for the power exhaust in a fusion reactor. If we take ITER as described in the ®nal design report (FDR) [1], a power ¯ow across the separatrix in the order of 100 to 150 MW might be needed to stay in the H-mode [2].
    [Show full text]
  • Coupling Optimization Experiment on HL-2A Based on Passive-Active Multijunction Antenna for 3.7Ghz Lower Hybrid System
    42nd EPS Conference on Plasma Physics P5.137 Coupling optimization experiment on HL-2A based on Passive-Active Multijunction antenna for 3.7GHz Lower Hybrid system Xingyu Bai, Hao Zeng, Bo Lu, Xiaolan Zou1, Roland Magne1, Annika Ekedahl1, Julien Hillairet1, Chao Wang, Jun Liang, He Wang, Yali Chen, Junwei He, Jieqiong Wang, Kun Feng and Jun Rao Southwestern Institute of Physics, Chengdu, China 1 CEA, IRFM, 13108 Saint Paul-lez-Durance, France System Introduction. A new Lower Hybrid Wave (LHW) system (3.7GHz/2MW/2s) has been built on HL-2A tokamak. A Passive-Active-Multijunction (PAM) concept antenna [1], [2] was designed and built, fed by 500kW × 4 TH2103A Klystrons, delivering ITER-relevant power density, i.e. 25MW/m2 at f = 3.7GHz [3],[4]. The antenna is designed to launch a peak parallel refractive index of N||=2.75 with a low theoretical Reflection Coefficient (RC), i.e. less than 1% [5], [6]. A specific gas puffing system for improving the antenna coupling and a set of Langmuir probes for antenna mouth density measurements are separately located on one side of the antenna each. An auxiliary vacuum system is installed at the rear of the antenna to improve the pumping efficiency. Vacuum leak tests and low power microwave scattering parameter measurements were done before the PAM antenna was installed on HL-2A, allowing the antenna to be conditioned at RF power of 100kW/100ms before starting plasma operation. Fig. 1: New LHW system(3.7GHz/2MW/2s)of HL- Fig. 2: PAM launcher was developed and installed, facing 2A.
    [Show full text]
  • Physics Basis for the ITER Tungsten Divertor
    Physics basis for the ITER tungsten divertor R. A. Pitts1, X. Bonnin1, F. Escourbiac1, T. Hirai1, J. P. Gunn2, A. S. Kukushkin3, M. Lehnen1, V. Rozhansky4, E. Sytova1,4, G. De Temmerman1 1 ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France 2CEA Cadarache, F-13108 St Paul lez Durance, France 3NRC Kurchatov Institute, 123182 Moscow, Russia 4 Peter the Great St.Petersburg Polytechnic University St.Petersburg, 195251 St.Petersburg, Russia [email protected] Building on about 20 years of physics simulation, engineering design and component testing, the ITER tokamak divertor is the largest and most complex ever to be constructed. At the time of the last report to the PSI Conference Series on the ITER divertor status in 2012, the strategy to begin operations with full-tungsten (W) armour had been proposed by the ITER Organization (IO) and was under study. The decision was taken formally in 2013, since when the physics basis in support of the final design has been further developed, with invaluable and numerous contributions from the research community within the ITER Parties. On the eve of component procurement, this paper will discuss the present basis, beginning with a reminder of the key elements defining the overall design, and outlining relevant aspects of the Research Plan accompanying the new “4-staged approach” to ITER nuclear operations which fix the overall lifetime constraint of the first divertor. The main focus will be on steady state and transient power fluxes in both non-active and DT phases, the main drivers for design and future divertor operation.
    [Show full text]
  • Overview of the Different Processes of Tungsten Coating Implemented Into WEST Tokamak M
    Overview of the different processes of tungsten coating implemented into WEST tokamak M. Firdaouss1, C. Desgranges1, C. Hernandez1, M. Richou1, H. Greuner2, B. Böswirth2, I. Zacharie- Aubrun3, T. Blay3, J. Bucalossi1, M. Missirlian1, F. Samaille1, E. Tsitrone1 1CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France 2Max-Planck-Institut for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany 3CEA, DEC/SA3C/LEMCI, F-13108 Saint-Paul-Lez-Durance, France The Tore Supra tokamak is being transformed in an x-point divertor fusion device within the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims at testing W monoblock Plasma Facing Units (PFU) under long plasma discharge, with thermal loads of the same magnitude as those expected for ITER. The others Plasma Facing Components (PFC) will also be modified and coated with W to transform Tore Supra into a fully metallic environment. Different coating techniques have been selected, taking into account the specifications of the various PFC: heat loads, complex geometries (length up to 1m) and different substrates (CuCrZr for actively cooled PFC, graphite and CFC for other components). This paper gives an overview on the different processes used and the associated validation program and concludes on the adequacy of the W coating with the WEST experimental program requirements. Keywords: coatings, plasma facing components, tungsten 1. Introduction from the ripple losses and during the Vertical Displacement Events (VDE). These three types of PFC The development of tokamak plasma facing components are made of W-coated copper alloy CuCrZr.
    [Show full text]
  • Stellarator Research Opportunities
    Stellarator Research Opportunities A report of the National Stellarator Coordinating Committee [1] This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed.
    [Show full text]
  • LITHIUM DROPLET DIVERTOR COLLECTOR for IONS and HEAT* by Acceptance of This Article, the M
    MASTER C o tiC. 1*71/0*- LITHIUM DROPLET DIVERTOR COLLECTOR FOR IONS AND HEAT* By acceptance of this article, the M. Wells, Union Carbide Corporation Nuclear Division, Oak Ridge, TN 37830 publisher or recipient acknowledges the U.S. Government's right to Summary retain a nonexclusive, royalty-free license in and to any copyright Coping with the ion and energy fluxes which must covering the article. be collected with a tokamak divertor is one of the more difficult technological challenges for a power producing reactor. Use of stationary solid surfaces ORNL-DWG 79-3224 FED to collect ions and the attendant heat flux faces 100 technology feasibility questions. Calculations indi- cate that gravity-driven flow of liquid metals having a free surface will not move adequately fast. It is \\LITHIUM N^RBIU^ proposed to circumvent these problems by having high velocity lithium droplets perform the collection functions. Droplets which are not in contact with a wall encounter only very small retardation effects in a magnetic field, and these droplets can be formed by nozzles outside of the magnetic field. If they travel at about 150 m/s, they can absorb in excess of 2 1 kW/cm of projected area. The hydrogen isotope ion fluence is well below the saturation dose which has been achieved with lithium. This work is covered in detail in Reference 1. Introduction In a steady-state, ignited deuterium-tritium (D-T) plasma, the rate of the outward leakage of deuterium and tritium ions from the plasma is about one thousand times the burn rate.
    [Show full text]
  • Jet Joint Undertaking : Progress Report 1994
    JOINT EUROPEAN TORUS ttlW JET JOINT UNDERTAKING PROGRESS REPORT 1994 EUR 16474-EN-C EUR-JET-PR12 JET JOINT UNDERTAKING PROGRESS REPORT 1994 APRIL 1995 This document is intended for information only and should not be used as a technical reference. EUR 16474 EN (EUR-JET-PR12) April 1995. Editorial work on this report was carried out by B.E.Keen. The preparation for publication was undertaken by JET Publications Group, JET Joint Undertaking, Abingdon, UK. © Copyright ECSC/EEC/EURATOM, Luxembourg 1995 Enquiries about copyright and reproduction should be addressed to: The Publications Officer, JET Joint Undertaking, Abingdon, Oxon. 0X14 3EA, UK. Legal Notice Neither the commission of the European Communities nor any person acting on behalf of the Commission is responsible for the the use which might be made of the following information. Catalogue number : CD-NB-16474-EN-C for the Report EUR 16474-EN-C Printed in England Contents Introduction, Background and Summary 1 Technical Achievements during 1994 11 - Torus Systems 11 - Power Supplies and Magnet Systems 15 - Neutral Beam Heating Systems 31 - RF Heating Systems 42 - Operations Systems 57 - Remote Handling Systems 61 - Waste and Beryllium Handling 65 - Vacuum Systems 67 - Control and Data Acquisition System (CODAS) 69 - Data Management 74 - Diagnostic Systems 76 - Summary of Machine Operations 100 - Summary of Technical Achievements 103 St-it-iil¡fit- Achievements during 1994 107 - High Performance 108 - Di vertor Assessment and Di vertor Physics 115 - Tokamak Concept Improvements 141 -
    [Show full text]
  • JET JOINT UNDERTAKING : Annual Report 1998
    JOINT EUROPEAN TORUS JET JOINT UNDERTAKING ANNUAL REPORT 1998 EUR 19252-EN-C EUR-JET-AR21 JET JOINT UNDERTAKING ANNUAL REPORT 1998 SEPTEMBER 1999 LEGAL NOTICE: Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. Catalogue number: CD-NA-19252-EN-C for the report EUR 19252 (EUR-JET-AR21) This document is intended for information only and should not be used as a technical reference. Editorial work on this report was carried out by M.L. Watkins. Prepared and produced by JET Publications Group. ©Copyright ECSC/EEC/EURATOM, Luxembourg 1999 Enquiries about copyright and reproduction should be addressed to: The Publications Officer, JET Joint Undertaking, Abingdon, Oxon, 0X14 3EA, U.K. Printed in England Preface Introduction, Summary and Background Introduction 1 Report Summary 1 Background 2 Objectives of JET 3 JET, Euratom and other Fusion Programmes The Joint European Torus 7 Controlled Thermonuclear Fusion 9 Large International Tokamaks 16 Technical Status of JET Introduction 19 Technical Achievements 20 Technical Developments to Enhance Performance 38 Scientific Advances during 1998 Introduction 45 Main Scientific Results 47 Progress towards a Reactor 64 Programme Overview Background 67 Future Plans 70 Members and Organisation Members 75 Host Organisation 77 Project Team Structure 78 Administration Introduction 81 Finance 81 Contracts Service 84 Personnel Service 86 Press and Public Relations 90 Publications Group 90 Appendices I The JET Council 93 li The JET Executive Committee 94 III The JET Scientific Council 95 iii W j « r -ƒ« ι \ Preface The major technical achievement in 1998 was the highly successful exchange, by remote handling without manned intervention in the JET vessel, of the Mark HA divertor target structure for the Gas Box divertor (Mark IIGB).
    [Show full text]