Lyra' Divertor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasma-Materials and Divertor Options for Fusion
Plasma-Materials and Divertor Options for Fusion Presented to: National Academy of Sciences Panel A Strategic Plan for U.S. Burning Plasma Research J. Rapp ORNL is managed by UT-Battelle for the US Department of Energy Lifetime of divertor will deterimine fusion reactor availability TF coils Coolant manifold (permanent) Upper ports (modules and coolant) Blanket Cost of modules electricity is 5-6 yrs lifetime proportional 0.6 to (1/A) Central ports (modules) Vacuum vessel 70cm Cool shield (permanent) 30cm Divertor plates (permanent) Lower ports 2 yrs lifetime goal (divertor) Main driver of scheduled maintenance: divertor (and blanket) 2 Juergen Rapp Outline • Plasma-Material Interaction (PMI) challenges • Potential Plasma-Facing Materials (PFMs) and Components (PFCs) • Current status of U.S. PMI research • Facilities needed for the development of PFCs • Strategic elements to accelerate U.S. burning plasma research • A proposed high-level R&D program and roadmap for PMI 3 Juergen Rapp Outline • Plasma-Material Interaction (PMI) challenges • Potential Plasma-Facing Materials (PFMs) and Components (PFCs) • Current status of U.S. PMI research • Facilities needed for the development of PFCs • Strategic elements to accelerate U.S. burning plasma research • A proposed high-level R&D program and roadmap for PMI 4 Juergen Rapp Challenges for materials: fluxes and fluence, temperatures JET ITER FNSF Fusion Reactor 50 x divertor ion fluxes 5000 x divertor ion fluence up to 5 x ion fluence 106 x neutron fluence (1dpa) up to 100 x neutron fluence (150dpa) -
Alfvén-Character Oscillations in Ohmic Plasmas Observed on the COMPASS Tokamak
44th EPS Conference on Plasma Physics P5.140 Alfvén-character oscillations in ohmic plasmas observed on the COMPASS tokamak T. Markovicˇ1;2, A. Melnikov3;4, J. Seidl1, L. Eliseev3, J. Havlicek1, A. Havránek1;5, M. Hron1, M. Imríšek1;2, K. Kovaríkˇ 1;2, K. Mitošinková1;2, J. Mlynar1, R. Pánek1, J. Stockel1, J. Varju1, V. Weinzettl1, the COMPASS Team1 1 Institute of Plasma Physics of the CAS, Prague, Czech Republic 2 Faculty of Mathematics and Physics, Charles Uni. in Prague, Prague, Czech Republic 3 National Research Centre ’Kurchatov Institute’, Moscow, Russian Federation 4 National Research Nuclear University MEPhi, Moscow, Russian Federation 5 Faculty of Electrical Engineering, Czech Tech. Uni. in Prague, Prague, Czech Republic Energetic Particle (EP) driven plasma modes resulting from interaction of shear Alfvén waves with fast (i.e. comparable to plasma Alfvén velocity VA) ions generated by fu- sion reactions, NBI or ICRH heating [1] are capable of causing fast particle losses, hence negatively affecting the plasma per- formance or having detrimental effects on plasma-facing components or vacuum vessel [2]. A number of comprehensive reviews has already been published, describing properties of EP modes, their appearance, excitation and damping mechanisms, etc. (e.g. [1, 2, 3]). The modes are not trivially expected to appear in ohmic plasmas, however, plasma oscillations bearing their typical signatures have been re- ported in plasmas without an apparent source of EP on a number of devices (such as TFTR [5], ASDEX-U [6], MAST [7], TUMAN-3M Figure 1: High-frequency magnetic fluctuations. [8]). While impact of these specific phenom- fAE curve from eq. -
A European Success Story the Joint European Torus
EFDA JET JETJETJET LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION DEVELOPEMENT AGREEMENT THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA Fusion: the Energy of the Sun If the temperature of a gas is raised above 10,000 °C virtually all of the atoms become ionised and electrons separate from their nuclei. The result is a complete mix of electrons and ions with the sum of all charges being very close to zero as only small charge imbalance is allowed. Thus, the ionised gas remains almost neutral throughout. This constitutes a fourth state of matter called plasma, with a wide range of unique features. D Deuterium 3He Helium 3 The sun, and similar stars, are sphe- Fusion D T Tritium res of plasma composed mainly of Li Lithium hydrogen. The high temperature, 4He Helium 4 3He Energy U Uranium around 15 million °C, is necessary released for the pressure of the plasma to in Fusion T balance the inward gravitational for- ces. Under these conditions it is pos- Li Fission sible for hydrogen nuclei to fuse together and release energy. Nuclear binding energy In a terrestrial system the aim is to 4He U produce the ‘easiest’ fusion reaction Energy released using deuterium and tritium. Even in fission then the rate of fusion reactions becomes large enough only at high JG97.362/4c Atomic mass particle energy. Therefore, when the Dn required nuclear reactions result from the thermal motions of the nuclei, so-called thermonuclear fusion, it is necessary to achieve u • extremely high temperatures, of at least 100 million °C. -
Steady State and Transient Power Handling in JET G.F.Matthews* on Behalf of the JET EFDA Exhaust Physics Task Force and JET EFDA Contributors+ +See Annex of J
Steady State and Transient Power Handling in JET G.F.Matthews* on behalf of the JET EFDA Exhaust Physics Task Force and JET EFDA Contributors+ +See annex of J. Pamela et al, "Overview of JET Results", Fusion Energy 2002 (Proc. 19th Int. Conf. Lyon, 2002),IAEA, Vienna. *Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon. OX14 3DB,UK. E-mail: [email protected] Abstract. Steady state and transient power deposition profiles have been measured in the JET MIIGB divertor using improved diagnostics techniques involving the use of fast infra-red, thermocouples and Langmuir probe arrays. In unfuelled type I ELMy H-modes a very narrow power profile is observed at the outer target which we associate with the ion channel. Systematic parameter scans have been carried out and our analysis shows that the average power width scaling is consistent with a classical dependence of perpendicular transport in the SOL. Using the fast IR capability the factors such as rise time, broadening, variability and in/out asymmetry have been studied and lead to the conclusion that type I ELMs in ITER may fall just below the material ablation limits. JET disruptions are very different from type I ELMs in that only a small fraction of the thermal energy reaches the divertor and what does arrive is distributed uniformly over the divertor area. This is very different from the current ITER assumption which puts most of the energy from the thermal quench onto the divertor strike points. 1. Introduction The actively cooled divertor target for ITER has been tested up to a surface power loading of 25MWm-2 but the planned operating point is around 10MWm-2 to allow for excursions. -
Losses of Runaway Electrons in MHD-Active Plasmas of the COMPASS Tokamak
Losses of runaway electrons in MHD-active plasmas of the COMPASS tokamak O Ficker1;2, J Mlynar1, M Vlainic1;2;3, J Cerovsky1;2, J Urban1, P Vondracek1;4, V Weinzettl1, E Macusova1, J Decker5,M Gospodarczyk5, P Martin7, E Nardon8, G Papp9,VV Plyusnin10, C Reux8, F Saint-Laurent8, C Sommariva8,J Cavalier1;11, J Havlicek1, A Havranek1;12, O Hronova1,M Imrisek1, T Markovic1;4, J Varju1, R Paprok1;4, R Panek1,M Hron1 and the COMPASS team 1 Institute of Plasma Physics of the CAS, CZ-18200 Praha 8, Czech Republic 2 FNSPE, Czech Technical University in Prague, CZ-11519 Praha 1, Czech Republic 3 Department of Applied Physics, Ghent University, 9000 Ghent, Belgium 4 FMP, Charles University, Ke Karlovu 3, CZ-12116 Praha 2, Czech Republic 5 Swiss Plasma Centre, EPFL, CH-1015 Lausanne, Switzerland 6 Universita’ di Roma Tor Vergata, 00133 Roma, Italy 7 Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy 8 CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France 9 Max Planck Institute for Plasma Physics, Garching D-85748, Germany 10 Centro de Fusao Nuclear, IST, Lisbon, Portugal 11 Institut Jean Lamour IJL, Universite de Lorraine, 54000 Nancy, France 12 FEE, Czech Technical University in Prague, CZ-12000 Praha 2, Czech Republic E-mail: [email protected] Abstract. Significant role of magnetic perturbations in mitigation and losses of Runaway Electrons (REs) was documented in dedicated experimental studies of RE at the COMPASS tokamak. RE in COMPASS are produced both in low density quiescent discharges and in disruptions triggered by massive gas injection (MGI). -
The Pumped Divertor the NEW PHASE of JET B.E
The Pumped Divertor THE NEW PHASE OF JET B.E. Keen and M.L. Watkins and the JET Team JET Joint Undertaking, Abingdon, Oxford, UK Associate Member of EPS The pumped divertor experiment, in demonstrating before full deuterium-tritium operation an effective method of impurity control, aims to provide essential design data for a Next Step tokamak fusion device. The basic principle of the fusion pro Switzerland and Sweden. By mid-1983, by careful design of the targets and speci cess is the fusing of light nuclei to form the construction of JET, its power supplies fic operational techniques, but is limited, heavier ones and the accompanying re and buildings were completed on sche ultimately, by an unacceptably high influx lease of substantial energy. For a fusion dule and broadly to budget and the prog of impurities. The fourth area of work had reactor, there are several possible fusion ramme started. been started by earlier studies of energetic reactions, but the one that is easiest to JET is the largest project in the coordi particles produced as fusion products or achieve is that between the deuterium and nated programme of EURATOM, whose by ion cyclotron resonance heating tritium isotopes of hydrogen. This D-T fusion programme is designed to lead ulti (ICRH). It has now been addressed further reaction is : mately to the construction of an energy by the first tokamak plasma experiments D + T → 4He + neutrons + 17.6 MeV. producing reactor. Its strategy is based on in D-T mixtures. These results are presen At the temperatures needed for this reac the sequential construction of major ap ted briefly in the following sections. -
Advanced Tokamak Experiments in Full-W ASDEX Upgrade
1 PDP-4 Advanced tokamak experiments in full-W ASDEX Upgrade J. Stober, A. Bock, E. Fable, R. Fischer, C. Angioni, V. Bobkov, A. Burckhart, H. Doerk, A. Herrmann, J. Hobirk, Ch. Hopf, A. Kallenbach, A. Mlynek, R. Neu, Th. Putterich,¨ M. Reich, D. Rittich, M. Schubert, D. Wagner, H. Zohm and the ASDEX Upgrade Team Max-Planck-Institut fur¨ Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany email: [email protected] Abstract. Full W-coating of the plasma facing components of ASDEX Upgrade (AUG) in 2007 ini- tially prevented H-mode operation with little or no gas puff, due to collapses driven by W accumulation, also due to a lack of adequate central wave heating. Additionally, the limits for power loads to the di- vertor were reduced. Under these conditions low density, high beta plasmas with significant external current drive were virtually impossible to operate, i.e. the operational window for advanced tokamak (AT) research was effectively closed. To recover this operational window several major achievements were necessary: the understanding of the changes in pumping and recycling, the change to a full W divertor capable to handle higher power loads, a substantial increase of the ECRH/CD power and pulse length to avoid W accumulation and to adjust the current profile and, finally, new or upgraded diagnostics for the current profile, since the original MSE system turned out to be heavily disturbed by polarizing re- flections on W-coated surfaces. With these efforts it was possible to recover improved H-mode operation as well as to develop a new scenario for fully non-inductive operation at q95 = 5:3, bN of 2.7 and 50% of bootstrap current. -
Snowflake Divertor Studies in DIII-D and NSTX Aimed at the Power
40th EPS Conference on Plasma Physics (EPS 2013) Europhysics Conference Abstracts Vol. 37D Espoo, Finland 1 - 5 July 2013 Part 1 of 2 ISBN: 978-1-63266-310-8 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2013) by the European Physical Society (EPS) All rights reserved. Printed by Curran Associates, Inc. (2014) For permission requests, please contact the European Physical Society (EPS) at the address below. European Physical Society (EPS) 6 Rue des Freres Lumoere F-68060 Mulhouse Cedex France Phone: 33 389 32 94 40 Fax: 33 389 32 94 49 [email protected] Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com 40th EPS Conference on Plasma Physics 1 - 5 July 2013 Espoo, Finland Snowflake Divertor Studies in O2.101 Soukhanovskii, V.A. DIII-D and NSTX Aimed at the Power Exhaust Solution for the Tokamak Lang, P.T., Bernert, M., Burckhart, A., Casali, L., Fischer, R., Pellet as tool for high density O2.102 Kardaun, O., Kocsis, G., Maraschek, M., Mlynek, A., Ploeckl, B., operation and ELM control in Reich, M., Francois, R., Schweinzer, J., Sieglin, B., Suttrop, W., ASDEX Upgrade Szepesi, T., Tardini, G., Wolfrum, E., Zohm, H., Team, A. Modelling of the O2.103 Panayotis, S. erosion/deposition pattern on the Tore Supra Toroidal Pumped Limiter Non-inductive Plasma Current Start-up in NSTX Raman, R., Jarboe, T.R., Jardin, S.C., Kessel, C.E., Mueller, D., using Transient CHI and O2.104 Nelson, B.A., Poli, F., Gerhardt, S., Kaye, S.M., Menard, J.E., Ono, subsequent Non-inductive M., Soukhanovskii, V. -
June 2018 Fusion in Europe
FUSION IN EUROPE NEWS & VIEWS ON THE PROGRESS OF FUSION RESEARCH “Let us face it: TO DTT OR NOT TO DTT there is no VACUUM – HOW NOTHING REALLY planet B!” MATTERS NOW IS THE TIME TO BE AT JET 2 2018 Fusion Writers … wanted! … and Artists This could be you Fusion in Europe is call- ing for aspiring writers and gifted artists! Introduce yourself to an international audience! Catch one of our topics and turn it into your own! • The future powered by fusion energy • Fusion science and industrial reality • Fusion - a melting pot of different sciences • Fusion drives innovation Find the entire list here: tinyurl.com/ybd4omz7 Your application should include a short CV and a motivational letter. Please apply here: tinyurl.com/ybd4omz7 EUROfusion | Communications Team | Anne Purschwitz (”Fusion in Europe“ Editor) Boltzmannstr. 2 | 85748Application Garching | +49 89 deadline: 3299 4128 | [email protected] 25 June 2018 | Editorial | EUROfusion | “It is the best time to be at JET right now” says a passionate Eva Belo nohy. The member of JET’s Exploitation Unit has recently organised a very suc- cessful workshop. It was aimed to ‘refresh’ the knowledge of European fu- sion researchers regarding the Joint European Torus (JET) but that was a classic understatement. The meeting was a fully-fledged overview on JET’s capabilities which have tremendously changed in the past. The tokamak has gone through major upgrades since it saw its first deuterium tritium campaign in 1997. Those include not only an ITER-like wall but also an Fusion Writers… wanted! … increase of the heating power by 50 percent. -
Coupling Optimization Experiment on HL-2A Based on Passive-Active Multijunction Antenna for 3.7Ghz Lower Hybrid System
42nd EPS Conference on Plasma Physics P5.137 Coupling optimization experiment on HL-2A based on Passive-Active Multijunction antenna for 3.7GHz Lower Hybrid system Xingyu Bai, Hao Zeng, Bo Lu, Xiaolan Zou1, Roland Magne1, Annika Ekedahl1, Julien Hillairet1, Chao Wang, Jun Liang, He Wang, Yali Chen, Junwei He, Jieqiong Wang, Kun Feng and Jun Rao Southwestern Institute of Physics, Chengdu, China 1 CEA, IRFM, 13108 Saint Paul-lez-Durance, France System Introduction. A new Lower Hybrid Wave (LHW) system (3.7GHz/2MW/2s) has been built on HL-2A tokamak. A Passive-Active-Multijunction (PAM) concept antenna [1], [2] was designed and built, fed by 500kW × 4 TH2103A Klystrons, delivering ITER-relevant power density, i.e. 25MW/m2 at f = 3.7GHz [3],[4]. The antenna is designed to launch a peak parallel refractive index of N||=2.75 with a low theoretical Reflection Coefficient (RC), i.e. less than 1% [5], [6]. A specific gas puffing system for improving the antenna coupling and a set of Langmuir probes for antenna mouth density measurements are separately located on one side of the antenna each. An auxiliary vacuum system is installed at the rear of the antenna to improve the pumping efficiency. Vacuum leak tests and low power microwave scattering parameter measurements were done before the PAM antenna was installed on HL-2A, allowing the antenna to be conditioned at RF power of 100kW/100ms before starting plasma operation. Fig. 1: New LHW system(3.7GHz/2MW/2s)of HL- Fig. 2: PAM launcher was developed and installed, facing 2A. -
Disruption Mitigation Studies at ASDEX Upgrade in Support of ITER
Disruption mitigation studies at ASDEX Upgrade in support of ITER G. Pautasso1, M. Bernert1, M. Dibon1, B. Duval2, R. Dux1, E. Fable1, C. Fuchs1, G.D. Conway1, L. Giannone1, A. Gude1, A. Herrmann1, M. Hoelzl1, P.J. McCarthy3, A. Mlynek1, M. Maraschek1, E. Nardon4, G. Papp1, S. Potzel1, C. Rapson1, B. Sieglin1, W. Suttrop1, W. Treutterer1, the ASDEX Upgrade1 and the EUROfusion MST15 teams 1 Max-Plank-Institute fuer Plasma Physik, D-85748, Garching, Germany 2 Swiss Plasma Centre, EPFL, CH-1016 Lausanne, Switzerland 3 Department of Physics, University College Cork, Ireland 4 CEA, IRFM, F-13108 Saint Paul lez Durance, France 5 http://www.euro-fusionscipub.org/mst1 IEA Workshop on Disruptions, July 20-22 2016, PPPL, USA 1 Content Experimental scenarios and rational behind interpretation of pre-thermal quench force mitigation in MGI(*) induced plasma termination; focus on small gas quantities thermal load mitigation runaway electron generation and losses; focus on MGI suppression (*) MGI = massive gas injection IEA Workshop on Disruptions, July 20-22 2016, PPPL, USA 2 Background 22 3 2008-2013: MGI exp.s in AUG aimed at reaching ne ~ nc ~ O (10 ) / m during or just after TQ for RE suppression poor impurity assimilation at large Ninj → attempts to reach nc abandoned ITER DMS consists now of several injectors for TQ & force mitigation + RE suppression TQ: Minimum impurity amount for force & thermal load mitigation? CQ: Is control and/or suppression of REs possible? IEA Workshop on Disruptions, July 20-22 2016, PPPL, USA 3 AUG: Mitigation valves, -
Physics Basis for the ITER Tungsten Divertor
Physics basis for the ITER tungsten divertor R. A. Pitts1, X. Bonnin1, F. Escourbiac1, T. Hirai1, J. P. Gunn2, A. S. Kukushkin3, M. Lehnen1, V. Rozhansky4, E. Sytova1,4, G. De Temmerman1 1 ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France 2CEA Cadarache, F-13108 St Paul lez Durance, France 3NRC Kurchatov Institute, 123182 Moscow, Russia 4 Peter the Great St.Petersburg Polytechnic University St.Petersburg, 195251 St.Petersburg, Russia [email protected] Building on about 20 years of physics simulation, engineering design and component testing, the ITER tokamak divertor is the largest and most complex ever to be constructed. At the time of the last report to the PSI Conference Series on the ITER divertor status in 2012, the strategy to begin operations with full-tungsten (W) armour had been proposed by the ITER Organization (IO) and was under study. The decision was taken formally in 2013, since when the physics basis in support of the final design has been further developed, with invaluable and numerous contributions from the research community within the ITER Parties. On the eve of component procurement, this paper will discuss the present basis, beginning with a reminder of the key elements defining the overall design, and outlining relevant aspects of the Research Plan accompanying the new “4-staged approach” to ITER nuclear operations which fix the overall lifetime constraint of the first divertor. The main focus will be on steady state and transient power fluxes in both non-active and DT phases, the main drivers for design and future divertor operation.