The Past, Present and Future of Top Data Center Components Stephen J

Total Page:16

File Type:pdf, Size:1020Kb

The Past, Present and Future of Top Data Center Components Stephen J DATA CENTER The past, present and future of top data center components Stephen J. Bigelow A photostory 1 2 3 4 5 6 7 8 9 The time traveler’s guide to data center planning REMEMBER YOUR FIRST the business need, and of server? First virtual course doing more with cluster? With Moore’s Law less overhead and power pushing faster, cheaper demand. and more powerful hard- ware in each product cycle, Look at how far data cen- it’s worth taking a look at ter components have come how far we’ve come and since the first mainframes what’s ahead before tack- coexisted with poodle ling data center planning. skirts and the advent of rock ‘n’ roll, and what to It’s not all about more, expect from the future in more, more -- tomorrow’s servers, mainframes, net- data center will focus on working, storage and more. synchronizing hardware with its application work- Courtesy of Express and load, scaling precisely with Star/Thinkstock 1 2 3 4 5 6 7 8 9 IN JUST A few decades, Every workload imposes servers have gone from unique computing de- Forget the ‘90s -- workloads large, UNIX-based systems mands. to smaller, generic, stan- demand new types of servers dards-based commodity The complex instruction computing platforms. sets of x86 processors will yield to reduced instruc- The types of servers that tion set computing (RISC) rule the data center today processors for workloads wouldn’t recognize early such as Web servers. computing systems. The Reducing the instruction IBM AS/400 Advanced set speeds processor 36 Model 436 exemplified performance while using 1990s server technolo- considerably less energy gies, with one single-chip than commodity servers processor and nearly 18 for the same workload. W power. Today’s mid- RISC servers deliver vastly range servers, like the more computing power to Dell PowerEdge 420, use workloads when they need multicore processors at it than scaling back. This 80+ W. On-server storage is a core requirement for memory quadrupled and scalable cloud computing, gained resiliency features. and experimental systems Current high-end x86 serv- like Hewlett-Packard Co.’s ers run multiple 10-core Project Moonshot show processors, hundreds of promise. gigabytes of memory and far more internal storage. Future server technologies Moore’s Law marched on will enable a modular par- from the ‘90s to today, but adigm, replacing complete that upward trajectory is rack or blade systems with leveling out. independent functional modules for processing, The next frontier is to memory, I/O and more. This match the server archi- disaggregated approach tecture to the workload. allows organizations to With raw computing power change out specific com- accelerating more slowly, puting elements rather than the principal expectations replacing complete servers. for tomorrow’s enterprise server types are better Chris Dag/Flickr scalability and efficiency. 1 2 3 4 5 6 7 8 9 MAINFRAMES have been a zEnterprise BladeCenter staple of business comput- Extension (zBX) to integrate A look at mainframe technologies ing since IBM released the up to 112 blade modules, vacuum-tube behemoth including WebSphere ap- 700 series in 1952, and big pliances with x86 or Power through the decades iron has solidified many blades -- all communicating concepts. Though the very across redundant 10 GBps earliest mainframe technolo- Ethernet ports. Models offer gies were synonymous with up to 120 zEC12 z/Architec- incompatibility, the technol- ture processor cores and ogy is on a continual path to up to 3 TB memory in a re- integrating with the rest of dundant array for improved the data center. resiliency. Core IT principles stem Operating system and from IBM’s transistor-based virtualization tools also are System/360 business-class opening up from narrow, mainframe. Hardware-based proprietary beginnings. IBM memory protection pre- introduced support for Win- vented user programs from dows Server 2008 on x86 disrupting the OS or other blades for the zBX, and both programs, a crucial principle proprietary and Linux-based of virtualization. Emulation operating systems. In 2013, let newer System/360s run IBM released a version of older mainframe programs the System z114 server that -- a nod to backward com- runs only Linux on top of the patibility. The System/360 z/VM hypervisor. paved the way to peripheral standardization via a chan- Future mainframe systems nel scheme for card reader, will blur the lines of hard- printer, early tape and disk ware, software and systems storage and other device management. Management interfaces. Compilers, job software tools will play an queuing -- the list of main- enormous role in heteroge- frame firsts goes on. neous support. Third-party tools are transforming to The trend in modern control heterogeneous mainframe technology is to mainframe, x86 and Power bridge the divide between infrastructures. mainframes and traditional servers. IBM’s zEnterprise is Getty Images/iStockphoto based on a System z server combined with an IBM 1 2 3 4 5 6 7 8 9 Ethernet networks accelerate from 0 to 100 GBps in 40 years ETHERNET NETWORKS AND speeds grew to 100 MBps, Token Ring networking then to GBps. Enterprise coexisted in data centers data centers adopted GigE past, but Ethernet was as a network backbone. efficient and less expen- Today, GigE is the common sive, scaling well beyond standard network adapter Token-Ring’s 16 MBps data for almost every server or rates. And Ethernet is still endpoint computer. Data scaling as users demand center servers often com- more data. bine GigE with TCP offload engine network adapters to Token Ring network handle high network traffic. architecture operated like a round robin -- passing The future holds even a token around a ring of faster Ethernet standards. interconnected devices While 10 GigE is primarily until a node needed to used for high-bandwidth exchange data. Ethernet applications, expect it to networks introduced a slowly filter down to indi- collision approach; nodes vidual servers and endpoint simultaneously competed systems. Speeds of 40 for access to the wire. The GigE and even 100 GigE result was a chaotic yet ef- are currently standardized ficient use of the network, in IEEE 802.3ba and sev- and early coaxial cabling eral subsequent additions. was replaced by much Those high-speed Ethernet less expensive twisted technologies primarily pair cabling. Ethernet was are based on optical fiber popularized by then-fledg- (though 40 GigE is possible ling 3Com from the 1970s over Category 8 twisted into the 1980s. The IEEE pair cable) and await broad standardized Ethernet in adoption across the data the mid-1980s. center, paired with innova- tions like software-defined As contention for use of networking the wires and higher-band- width applications caused Ian Wilson/Wikimedia serious latencies, Ethernet Commons 1 2 3 4 5 6 7 8 9 From punchard beginnings, data centers reach for petabyte storage THE FIRST STAte-of-the- serially rather than in par- ART aftermarket disk allel. Even modest storage drives wouldn’t even store arrays like the HP Modular a handful of high-resolu- Smart Array 2040 hold 24 tion images from a digital disks; full-sized storage camera today. In the future, systems like an EMC Isilon more sophisticated tech- provide anywhere from 18 nologies will bring petabyte TB to 20 PB of storage storage to the average data across thousands of indi- center, and disk drives may vidual disks. become obsolete. The role of magnetic disk Early rotating magnetic storage will greatly change drum or disk data storage in tomorrow’s enterpris- systems -- the IBM 350 and es, thanks to solid-state 353, for example -- worked storage. Solid state disk on IBM mainframes dating (SSD) devices like Intel’s back to the 1950s. Disk DC S3500 series and I/O proved fast and reliable as accelerator devices (some- a storage media, becoming times called solid-state ac- commercially available in celerators) like Fusion-io’s servers and endpoint devic- ioDrive2 will increasingly es by the mid-1980s. take on tier-1 storage tasks for the most demanding Today’s disk storage sys- enterprise workloads. Fu- tems hit multi-terabyte (TB) ture SSDs will offer better capacities with petabytes reliability and wear leveling (PB) just over the horizon. algorithms to maximize the Modern 2U and larger device’s working life servers easily house four to eight disks, interfacing Daniel Gies/Flickr 1 2 3 4 5 6 7 8 9 DATA -- CUSTOMER lists, Disk drives have largely product designs -- is valu- replaced tape drives for Alongside time-tested tape, able and needs protection. enterprise data backup, Backups, disaster recovery thanks to lower costs new data backup systems thrive and business continuity (roughly $0.08 per GB in are fusing together into an 2010) and the ability to overarching enterprise data locate files on-demand protection scheme. rather than spooling. Disk contents can be replicated low-cost and long-last- easily across a network ing magnetic tape drives for redundancy or disaster have been a staple of data recovery. Disk storage backup systems since the enables other creative data IBM System/360 main- protection technologies, frame days. Remember such as snapshots, essen- the venerable 2400 series tial in today’s virtualized using spools of half-inch data centers. tape writing in seven tracks with data densities up to Storage and network 600 bits per inch? bandwidth are becoming so plentiful, inexpensive and Cartridge-style tape -- ubiquitous that the data Travan, digital linear tape, backup function in IT can Linear Tape-Open (LTO), be outsourced to third-par- among others -- eventually ty service providers. Cloud- superseded reel-to-reel based backup and disaster models. LTO designs recovery as a service, from evolved from 100 GB of Zerto, Latisys, Windstream uncompressed storage ca- and many others, address pacity written at 20 MBps how, not to what, you back in the early 21st century to up data.
Recommended publications
  • The Tape Renaissance
    The Tape Renaissance By: Fred Moore President, Horison Information Strategies www.horison.com The magnetic tape data storage industry has withstood numerous challenges from its own past performance, from the HDD industry, and mainly from those who are simply uninformed about the major transformation the tape industry has delivered. Early experience with numerous non-mainframe tape technologies were troublesome and turned many data centers away from using tape in favor of HDDs. Mainframe tape technology was more robust. Many data centers still perceive tape as mired in the world of legacy tape as a result. However, this view is completely out of date. The Legacy Tape Era The tape problems of the past were numerous and resulted in time-consuming reliability and management issues. Edge, stretch, tear, cartridge load problems and crimping were common. The servo tracks were written on the edge of the tape media and dropping a cartridge often meant damage to the servo leaving a non-readable tape. Metal particle (non-oxidized) media life was typically 4-10 years before concerns about re-readability arose. As the issues persisted, the HDD industry took advantage of these concerns and actively pronounced “tape is dead”. The Tape Renaissance Changes the Game The advent of LTO (Linear Tape Open) from the LTO consortium marked the beginning of the tape renaissance. LTO was originally developed in the late 1990s as an open standard alternative to the numerous proprietary magnetic tape formats that were available at the time. Today, Hewlett Packard Enterprise, IBM, and Quantum comprise the LTO Consortium, which directs development and manages licensing and certification of media and mechanism manufacturers.
    [Show full text]
  • The Future of Data Storage Technologies
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on The Future of Data Storage Technologies Sadik C. Esener (Panel Co-Chair) Mark H. Kryder (Panel Co-Chair) William D. Doyle Marvin Keshner Masud Mansuripur David A. Thompson June 1999 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on the Future of Data Storage Technologies Sponsored by the National Science Foundation, Defense Advanced Research Projects Agency and National Institute of Standards and Technology of the United States government. Dr. Sadik C. Esener (Co-Chair) Dr. Marvin Keshner Dr. David A. Thompson Prof. of Electrical and Computer Director, Information Storage IBM Fellow Engineering & Material Sciences Laboratory Research Division Dept. of Electrical & Computer Hewlett-Packard Laboratories International Business Machines Engineering 1501 Page Mill Road Corporation University of California, San Diego Palo Alto, CA 94304-1126 Almaden Research Center 9500 Gilman Drive Mail Stop K01/802 La Jolla, CA 92093-0407 Dr. Masud Mansuripur 650 Harry Road Optical Science Center San Jose, CA 95120-6099 Dr. Mark H. Kryder (Co-Chair) University of Arizona Director, Data Storage Systems Center Tucson, AZ 85721 Carnegie Mellon University Roberts Engineering Hall, Rm. 348 Pittsburgh, PA 15213-3890 Dr. William D. Doyle Director, MINT Center University of Alabama Box 870209 Tuscaloosa, AL 35487-0209 INTERNATIONAL TECHNOLOGY RESEARCH INSTITUTE World Technology (WTEC) Division WTEC at Loyola College (previously known as the Japanese Technology Evaluation Center, JTEC) provides assessments of foreign research and development in selected technologies under a cooperative agreement with the National Science Foundation (NSF).
    [Show full text]
  • R4 Os-2916 Ops Final 3
    OVERLAND STORAGE OVERLAND STORAGE, INC. 2004 ANNUAL REPORT Overland Storage, Inc. 4820 Overland Avenue San Diego, California 92123 USA Tel: 858-571-5555 Fax: 858-571-0982 www.overlandstorage.com 2004 ANNUAL REPORT C ORPORATE I NFORMATION BOARD OF DIRECTORS CORPORATE MANAGEMENT WORLDWIDE LOCATIONS SHAREHOLDER INFORMATION Christopher P. Calisi Christopher P. Calisi* Overland Storage, Inc. ANNUAL MEETING President and President and 4820 Overland Avenue The annual meeting will be Chief Executive Officer Chief Executive Officer San Diego, California 92123 USA held at 9:00 a.m. on Monday, Overland Storage, Inc. Toll free: 800-729-8725 November 15th at Director since 2001 Chester Baffa* Tel: 858-571-5555 Overland Storage, Inc. Vice President Fax: 858-571-0982 4820 Overland Avenue Robert A. Degan Worldwide Sales and E-mail: [email protected] San Diego, California Private Investor Customer Support www.overlandstorage.com Director since 2000 STOCK INFORMATION Diane N. Gallo* Overland Storage (Europe) Ltd. Overland’s Common Stock is Scott McClendon Vice President EMEA Office traded on the NASDAQ National Chairman Human Resources Overland House, Ashville Way Market under the symbol “OVRL.” Overland Storage, Inc. Wokingham, Berkshire Director since 1991 W. Michael Gawarecki* RG41 2PL, England TRANSFER AGENT AND REGISTRAR Vice President Tel: +44 (0)118-9898000 Wells Fargo Shareowner Services John Mutch Operations Fax: +44 (0)118-9891897 161 North Concord Exchange President and E-mail: [email protected] South St. Paul, Minnesota 55075
    [Show full text]
  • The DLT Tape Drive Maintains Internal Information About the Tape on a Tape Directory Track
    Question 1: Why does my DLT tape drive pause when cataloging some tapes? Answer: The DLT tape drive maintains internal information about the tape on a tape directory track. The directory track is updated before the tape is ejected from the drive. If the drive is powered off without ejecting the tape first, this information is lost. Re-generating the tape directory information takes several hours to complete, which makes it seem like the drive is hung. Allow sufficient time for the operation to complete and then eject the tape. Normal operation will resume after the directory track has been updated. Question 2: A backup to my DLT tape drive is stuck at 99% complete. What should I do? Answer: The backup most likely fails to complete because the Eject media after job completes option is selected on tape drives that require you to manually remove the tape (such as Digital Linear Tape (DLT), Linear Tape-Open (LTO), Travan, and On-stream drives). To remedy this situation, either deselects the Eject media... option or using BEUTILITY, you can configure Backup Exec to set automatic responses to the media alert. Question 3: After I recovered my cluster and all shared disks, the cluster services will not start. Why won’t it start and how can I get it started? Answer: The cluster service may not start because the disk signature on the Quorum disk is different from the original signature. If you have the Microsoft 2000 Resource Kit use Dumpcfg.exe or Cluster recovery from the Microsoft 2003 Resource Kit to replace the disk.
    [Show full text]
  • Specifications
    STT20000N, STT20000N-C . SCSI Minicartridge Drives . (standard and NS-20 versions) . Product Manual . © 1998 Seagate Technology, Inc. All rights reserved No part of this publication may be reproduced in any form without written permission from Seagate Technology, Inc. Publication Number 10005135-001, March 1998 Seagate, Seagate Technology, the Seagate logo and Sidewinder are trademarks or registered trademarks of Seagate Technology, Inc. Other product names are trademarks or registered trademarks of their owners. Seagate reserves the right to change, without notice, product offerings or specifications. Seagate Technology provides this manual "as is," without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Seagate Technology assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of this manual, nor for any problem that might arise from the use of the information in this manual. FCC Notice This equipment generates and uses radio frequency energy and, if not installed and used properly—that is, in strict accordance with the manufacturer's instructions—may cause interference to radio communications or radio and television reception. It has been tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment on and off, you are encouraged to try to correct the interference by one or more of the following measures: • Reorient the receiving antenna.
    [Show full text]
  • Magneto-Optical Drives, Flash Memory Devices, and Tape Drives Are Useful Supplements to Primary Storage
    13 0789729741 ch12 7/15/03 4:11 PM Page 663 CHAPTER 12 High-Capacity Removable Storage 13 0789729741 ch12 7/15/03 4:11 PM Page 664 664 Chapter 12 High-Capacity Removable Storage The Role of Removable-Media Drives Since the mid-1980s, the primary storage device used by computers has been the hard disk drive. However, for data backup, data transport between computers, and temporary storage, secondary storage devices such as high-capacity removable media drives, floptical drives, magneto-optical drives, flash memory devices, and tape drives are useful supplements to primary storage. Pure optical storage—such as CD-R, CD-RW, DVD-RAM, DVD+RW, DVD-RW, and others—is covered in Chapter 13, “Optical Storage.” These types of drives can also be used as a supplement to hard disk storage as well as for pri- mary storage. The options for purchasing removable devices vary. Some removable-media drives use media as small as a quarter or your index finger, whereas others use larger media up to 5 1/4''. Most popular removable- storage drives today have capacities that range from as little as 16MB to as much as 100GB or more. These drives offer fairly speedy performance and the capability to store anything from a few data files or less frequently used programs to complete hard disk images on a removable disk or tape. The next two sections examine the primary roles of these devices. Extra Storage As operating systems and applications continue to grow in size and features, more and more storage space is needed for these programs as well as for the data they create.
    [Show full text]
  • IBM Storage Speichertechnologien Unter Der Lupe
    Kurt Gerecke Juni 2012 IBM Storage Speichertechnologien unter der Lupe © 2012 IBM Corporation IBM System Storage Agenda 1 Wir habe ein Geburtstagskind – Historie zum Aufwärmen ..... 2 Disk Technologien 3 Solid State Disks (SSD‘s) 4 Storage Class Memories und Positionierung 5 Millipede und optische Speichertechnologien 6 Tape Technologien 7 Speicherhierarchie 8 Nano-Technologien © 2012 IBM Corporation 1952: IBM Modell 726 erster Bandspeicher • 18.000 Lochkarten • 1.440.000 Characters • 1.44 MB • Acetat Plastikband mit Eisenoxydbeschichtung • 7-Spur Technik (6 x Daten, 1 x Redundanzprüfung) • Datenrate 7.5 Kbit/s, S/L-Geschwindigkeit 1.9 m/s • entwickelt in Phougkeepsie im Zuge der IBM 701 Entwicklung Photo 1951 Prototyp Photo 1952 IBM 726 in Betrieb 720 Meter Bandlänge 100 BPI 1953: IBM Modell 727 (728) • 24.000 Lochkarten • 1.920.000 Characters • 1.92 MB • 7 Spur-Technik 1958: IBM Modell 729 • 50.000 Lochkarten • 4.000.000 Characters • 4 MB • 7 Spur-Technik Bild: 729 Deutsches Museum München Modelle I bis VI • Erstes Tape Laufwerk mit Schreibkontrolle • Einlesen der Zeichen in ein Prüfregister 1961: IBM 7340 Hyper Tape Drives • Kontrolleinheit IBM 7640 • Für Rechner 7074, 7080, 7090 • Doppelte Übertragungsraten vs. 729 • 7-Spur-Technik • Höchste Datenrate WW • 170.000 Zeichen/s • 112.5 Zoll/s Tape Speed • Modelle 1 – 3 • 8 MB später 16 MB 1964: IBM 2401 Magnetbandsystem • speziell für System /360 • 9-Spur Technik • 800 BPI • 20 MB später 40 MB • erster ECC • CRC Cyclic Redundancy Check • Automatic Error Capture & Correction • Basis für spätere ECC‘s Löschschutzring 1970: IBM 3420 Modelle 3,5,7 • System /370 • 3803 Kontroller • 9-Spur-Technik • 800-1600 BPI • 120/200/320 Kilobytes/s •..
    [Show full text]
  • EDGE EFFECTS and SUBMICRON TRACKS in MAGNETIC TAPE RECORDING Graduation Committee
    EDGE EFFECTS AND SUBMICRON TRACKS IN MAGNETIC TAPE RECORDING Graduation Committee Prof. dr. ir. J. van Amerongen Univ. Twente (chairman) Prof. dr. J.C. Lodder Univ. Twente (promotor) Dr. ir. J.P.J. Groenland Univ. Twente (assistant promotor) Prof. dr. ir. P.P.L. Regtien Univ. Twente Dr. ir. L. Abelmann Univ. Twente Prof. dr. P.R. Bissell Univ. Central Lancashire, UK Prof. dr. J.-P. Nozi`eres Spintec, CEA/CNRS Grenoble, FR Prof. dr. S.B. Luitjens Philips Research Laboratories The research described in this thesis was funded by the Dutch Technology Foundation STW, project TTF.5041 “High-density recording in magnetic tape”. The work was performed in the Systems and Materials for Information storage group (SMI) of the MESA+ Institute for Nanotechnology, University of Twente. Printed by W¨ohrmann Print Service, Zutphen Copyright c 2005 by Adrian Hozoi ISBN 90-365-2166-1 EDGE EFFECTS AND SUBMICRON TRACKS IN MAGNETIC TAPE RECORDING DISSERTATION to obtain the doctor’s degree at the University of Twente, on the authority of the rector magnificus, prof. dr. W.H.M. Zijm, on account of the decision of the graduation committee, to be publicly defended on Thursday 17 March 2005 at 15.00 by Adrian Hozoi born on 18 February 1977 in Ia¸si,Romania This dissertation is approved by promotor: Prof. dr. J.C. Lodder assistant promotor: Dr. ir. J.P.J. Groenland Contents 1 Introduction 1 1.1 Brief Story of Magnetic Tape Storage . 1 1.2 Magnetic Tape Storage Nowadays . 5 1.2.1 A Multitude of Formats . 5 1.2.2 Areal Density Trends .
    [Show full text]
  • Ersatz-11 for Windows Pdp-11 Emulator Version 7.2
    ERSATZ-11 FOR WINDOWS PDP-11 EMULATOR VERSION 7.2 Copyright c 1993{2016 by Digby's Bitpile, Inc. All rights reserved. Release date: 01-Dec-2016 §¤¤ ¤ ¤¥ ¦¥¥ ¥ D Bit • 139 Stafford Road • Monson, MA • 01057 • USA • www.dbit.com § ¤ ¤¤ Digby's Bitpile, Inc. DBA D Bit ¤¥ 139 Stafford Road Monson, MA 01057 ¦ ¥¥ ¥ USA +1 (413) 267-4600 [email protected] www.dbit.com Copyright c 1993{2016 by Digby's Bitpile, Inc. All rights reserved. The following are trademarks of Digby's Bitpile, Inc.: £ ¡ D Bit E11 Ersatz ¢¡¡ ¡ The following are trademarks or registered trademarks of Digital Equipment Corporation: DEC DECnet DECtape DECwriter DIGITAL IAS MASSBUS PDP PDT P/OS Q-BUS RSTS RSX RT-11 ULTRIX UNIBUS VT The following are trademarks or registered trademarks of S&H Computer Systems, Inc.: TSX TSX-Plus Other product, service, and company names that appear in this document are used for identification purposes only, and may be trademarks and/or service marks of their respective owners. Contents 1 Introduction 1 1.1 Emulated block device types . 2 1.2 Emulated sequential device types . 3 1.3 Emulated serial device types . 3 1.4 Emulated network device types . 3 1.5 Emulated DDCMP device types . 4 1.6 Miscellaneous device types . 4 1.7 PC hardware support . 4 1.8 Device names . 6 1.9 Filenames . 7 1.10 Notes . 8 1.10.1 Interrupts . 8 1.10.2 Host systems . 8 1.10.3 Copyright and licensing . 9 1.11 Acknowledgments . 9 1.12 History . 10 2 Installation and Configuration 12 2.1 System requirements .
    [Show full text]
  • Tandberg Data Annual Report 1998
    The Year 1998 • Tandberg Data surpassed MNOK 1000 in year revenue • Tandberg Data surpassed MNOK 100 in revenue for a single month OEM agreements • New OEM agreement with Siemens for deliveries of SLR5 (4/8GB tape drive) • New OEM agreement with Fujitsu/ICL for deliveries of SLR5 (4/8GB tape drive) • IBM expands its OEM agreement to include SLR5 for use in AS/400e servers and systems • New OEM agreement entered into with Acer, for deliveries of SLR32 (MLR1) • IBM expands its OEM agreement to also include SLR50 (MLR3) for use in the AS/400 series • Siemens expands its OEM agreement to include SLR50 • Fujitsu ICL Computers expands its OEM agreement to include SLR50 Partnerships • Agreement entered into with Overland Data for development and manufacturing of SLR automation products. An agreement was also entered into concerning use of the VR2 technology in SLR tape drives • Agreement entered into with Quantum Corporation concerning marketing and licence manufacturing of DLT tape drives • Agreement with ADIC concerning the production of a DLT auto- loader New products • SLR50 25/50 GB (MLR3) tape drive launched • Travan product series expanded through introduction of Tandberg NS20, a 20 GB 3.5” tape drive directed at the SOHO entry level market • Tandberg Data expanded its library range by integrating its SLR50 (50 GB tape drives) in existing library products, thus providing storage capacities of up to 2 TB. • Tandberg Data introduced SLR24 (24 GB tape drive) on 09.07.98. • Tandberg Data introduced DLT4000 and DLT7000, based on Quantum’s DLT technology, on 14.12.98. • Tandberg Data introduced its “Advanced Replacement Service – ARS” for all Tandberg Data products.
    [Show full text]
  • Quantum® Dlttape™ Handbook
    Quantum® DLTtape™ Handbook Your Complete Guide to Today’s Hottest Storage Technology Eighth Edition FROM QUANTUM CORPORATION i Notice Editor Peter McGowan g•m marketing communications Associate Editor Stephen Weekley Quantum Corporation Senior Writer Hank Giles g•m marketing communications Art Director Christine Koch Knockout Graphics Illustrator Steve Hussey Copyright ©1997, 1998, 2000, 2001 Quantum Corporation QUANTUM CORPORATION 501 Sycamore Drive Milpitas, CA 95035 1-800-624-5545 www.quantum.com or www.DLTtape.com Quantum and the Quantum logo are trademarks of Quantum Corporation, registered in the U.S.A. and other countries. DLTtape, the DLTtape logo, Super DLTtape, and the Super DLTtape logo are trademarks of Quantum Corporation. Products mentioned herein are for identification purposes only and may be trademarks or registered trademarks of their respective companies. Quantum is not responsible for typographical, editorial, or pictorial errors in this publication. Product specifications and technical information are subject to change without notice. ii Foreword The world of data storage has changed a great deal since we pub- lished the first Quantum DLTtape™ Handbook in 1997. In just this short time, the role of storage has evolved dramatically. It has become clear that effective storage strategies are fundamental to the success of virtually any information technology strategy, whether it’s in re-energized smokestack industries or e-commerce. Since the first Quantum DLTtape Handbook, we now have pub- lished a total of eight editions, plus two editions in Japanese and one in Chinese. And, while the roles of storage and DLTtape tech- nology have changed and evolved with incredible speed, the objective of the handbook is still much the same as it was original- ly: to educate our various audiences by providing an in-depth look at DLTtape system technology and a comprehensive overview of DLTtape products and solutions.
    [Show full text]
  • Travan Tr7 Dynamic Electrical Test Failure Reduction
    TRAVAN TR7 DYNAMIC ELECTRICAL TEST FAILURE REDUCTION Joel C. Amil and the “Elite Sigma Team” Read-Rite Philippines, Inc. B8 P2b Carmelray Industrial Park Canlubang, Laguna, Philippines © Copyright 2003 Read-Rite Philippines, Inc. PROJECT TITLE: Travan TR7 Dynamic Electrical Test Failure Reduction TEAM : Elite δ MEMBERS: Name Position Responsibility Joel Amil Process Eng’g. Manager Team Leader Johnny Ledesma Process Engineer Mechanical Issues (FA/CA) Ernesto Manuel Process Engineer Electrical Test Issues (FA/CA) Eric Maligaya Customer Interface Mechanical Issues (FA/CA) Lito Suba Test-Section Manager Electrical Test (Equipment and Setup Marvin Marte QA Manager Customer Interface MEETING TIME / VENUE: Place: Joel Amil’s room Schedule: Monday’s through Fridays Time: 1245H to 1400H Attendance: 88.7% Start Date: Dec. 2002 End Date: Feb. 2003 © Copyright 2003 Read-Rite Philippines, Inc. 1.0 INTRODUCTION: Read-Rite Philippines is the manufacturing site for Tape Head Business Unit, the core competency is assembly and test. Read-Rite (Tape Head Business Unit) manufactures magnetoresistive (MR) tape heads to the entry level through mid-range tape drive markets, with products such as Travan, DLT (Digital Linear Tape), SLR (Scalable Linear Recording) and SDLT (Super DLT). In order to become competitive in the market, QUALITY, COST and DELIVERY performance must be world-class. This article describes the low first pass yield problem at Final Test station (Travan TR7), which is one of the major sources of high-cost-manufacturing, and how it was solved. 1.1 Yield TR7 tape heads are used for Travan 40 tape drives which offer up to 20 Gbytes native storage capacity (40 Gbytes compressed).
    [Show full text]