Course Notes: Week 3 1 Lecture 6: Conjugate Gradients (Lanczos Version) (4/11/11)

Total Page:16

File Type:pdf, Size:1020Kb

Course Notes: Week 3 1 Lecture 6: Conjugate Gradients (Lanczos Version) (4/11/11) Course Notes: Week 3 Math 270C: Applied Numerical Linear Algebra 1 Lecture 6: Conjugate Gradients (Lanczos Version) (4/11/11) The Arnoldi iteration is called Lanczos iteration in the case of a symmetric matrix A. We will go a step further in the next few lectures and assume that A is symmetric positive definite: A = AT ; xT Ax > 0 8x 6= 0 In this case, the Krylov method for solving Ax = b is called Conjugate Gradients. This method is much more simplistic than the GMRES algorithm and does not require the excessive storage of all previous Arnoldi (here Lanczos) vectors qi. Also, the method does not require the increasing number of inner products necessary for constructing Hk. We can derive this method using what we have covered thus far for GMRES. k kT k k n×k The first thing to note is that if we define T as Q AQ where Q 2 R are the Lanczos (formerly Arnoldi) vectors, then Tk = TkT since A is symmetric and since this is essentially the upper Hessenberg matrix from the GMRES discussion, we can see that Tk is symmetric tridiagonal: 0 1 α1 β1 0 ::: 0 B .. C B β1 α2 β2 . 0 C k B C T = B .. .. .. C B 0 . C B C @ βk−1 A 0 ::: 0 βk−1 αk The addition of zeros above the diagonal that results from the symmetric upper Hessenberg nature will save us the inner product calculations needed in the Graham-Schmidt stage of the GMRES process. However, we will see that we can go even further and avoid storage of Qk altogether. Again, this is noteworthy because this increasingly excessive storage (and the excessive cost of the inner products) that arises when the number of iterations is large are the primary drawbacks of the GMRES algorithm. In general for the Krylov methods with Lanczos/Arnoldi bases we write xk = Qkλk. It would k k−1 k be nice if we could write this as x = x + λkqk and then only require the generation/storage of the newest Lanczos vector. Unfortunately, for both CG and GMRES, this will not be possible. k k−1 However, for CG we will be able to write x = x + αkpk in terms of a different basis for the Krylov space. This modification to the algorithm will be what allows us to avoid the storage of the increasingly costly Qk. We can derive this new basis by modifying the functional that we minimize at each iteration (e.g. for GMRES we minimized the L2 norm of the residual over the kth Krylov space) to yield a symmetric positive definite tridiagonal solve at each iteration that we can show leads to the basis vectors pk. I will call this the Lanczos derivation of CG. We will also do steepest descent inspired derivation in the following lectures. 1.1 Minimizing the A Norm of the Error When A is symmetric positive definite, it defines a norm: p T jjxjjA = x Ax: 1 Most importantly for us, it will be easy to evaluate the A-norm of the error. Specifically, we will minimize the A-norm over the Krylov space at each iteration. This will be more useful than simply minimizing the L2 norm of the residual (which is equivalent to minimizing the AT A norm of the error). The error at step k is ek = x − xk. The residual is related to the error as rk = Aek. We can see the useful equality: T k 2 k k T kT kT k T k jje jjA = e Ae = x b − 2x b + x Ax = x b + 2φ(x ) T 1 T where φ(x) = x b + 2 x Ax. So technically in order to know the A-norm of the error we would need to know xT b which we cannot know. However, the above expression shows that the A-norm of the error has the same minimizer as φ. Therefore, we can choose our kth iterate to minimize φ rather than the L2 norm of the residual. We will see that this leads to more favorable properties of the iterative scheme (namely that we do not have to store the Qk). In order to find xk as the minimizer of φ over Kk, we can use the Lanczos basis and write xk = Qkλk k k k k k where λ solves rλf (λ) = 0 with f (λ) = φ(Q λ). Therefore, λ is the solution of T T k k k k k k k k rλf (λ ) = Q AQ λ − Q b = T − b^ : This is particularly useful because it is relatively easy to solve (via LDLT factorization) a sym- metric positive definite tridiagonal system. Notably, it is very difficult to solve this system (via factorization) if the matrix is symmetric but indefinite (i.e. if A has both negative and positive eigenvalues). In other words, this is really only going to be possible for the symmetric positive definite case (even though Tk is tridiagonal even in the case of symmetric indefinite). 2 Lecture 7: Tridiagonal Factorization Properties (4/13/11) 2.1 Tridiagonal Symmetric Positive Definite LDLT The LDLT factorization of Tk can be determined as 0 1 1 0 1 d1 B µ1 1 C B C B d2 C T Lk = B .. .. C ; Dk = B C ; Tk = LkDk Lk B . C B .. C B C @ . A @ µk−2 1 A dk µk−1 1 If you just multiply these out you can see that the µi and di can be determined as d1 α1 µ β1 1 d1 for i = 2 to k do di αi − µi−1βi−1 µ βi i di end for In general, the sensitivity of this procedure to roundoff errors will be proportionate to the condition number of A. Also, this process can fail catastrophically if A is symmetric indefinite. Of course, βi th and αi do not change when k > i so we will only need to compute dk and µk−1 at the k iteration. 2 2.2 Forward and Backward Substitution The LDLT factorization is useful because it facilitates forward and backward substitution based solution for λk. To first do the forward substitution, we use pk = LkT λk and solve LkDkpk = b^k: s jjbjj2; pk s ; 1 d1 for i = 2 to k do s sµi−1; pk (−1)i+1 s ; i di end for k Of course, at iteration k all the pi for i = 1; : : : ; k − 1 are the same as from the previous iteration k so the only new data is pk. So to sum up, at the kth iteration you need to calculate: βk k k+1 s dk = αk − µk−1βk−1; µk = ; s = sµk−1; pk = (−1) dk dk Unfortunately, although the pk only change in the last component at each iteration, the λk will be completely different at each iteration. We can see this from the expression 0 1 µ 1 1 0 λk 1 0 pk 1 1 µ 1 1 B 2 C λk pk k k B . C B 2 C B 2 C L λ = B .. .. C B . C = B . C B C B . C B . C B 1 µ C @ A @ A @ k−1 A λk pk 1 k k k that although the pk is the only new piece of information in the right hand side of the equation it k will unfortunately affect each λi in the back substitution process. Unlike the forward substitution k for the pi where information propagates from small i to large, the back substitution process for the k λi will propagate information from large i to small. And since the change in the right hand side is k k th at pk, every λi will unfortunately be affected. This means that expressing the k iterate in terms of the Lanczos vectors (xk = Qkλk) requires that we store all previous vectors which we will see is suboptimal for symmetric positive definite matrices. 3 Lecture 8: Memory Efficient Basis for the Krylov Space (4/15/11) The insight needed to yield an algorithm that does not require the storage of all prior search directions is basically related to the derivation of a new basis for the Krylov space Kk. We will not see this completely until we go through the steepest descent derivation of CG, but we will derive the basis vectors now and prove their properties later. The hope for avoiding the storage of the search directions is hinted at in the tridiagonal structure of conjugation of the matrix with the Lanczos basis for Kk. Unfortunately, the behavior of the λk that we just discussed suggests that we need k k k k k k n×k some other basis for representing x over K . These basis vectors (C = c1; c2;:::; ck 2 R ) are given as Ck = Qk(Lk)−T k k k k k k k k k−1 k k We can then see that x = Q λ = C p = c1; c2;:::; ck−1 p + pkck. We have already shown that pk only changes in the last component (i.e. that pk−1 is from the previous iteration). There- k k k k−1 k k−1 k k fore, if c1; c2;:::; ck−1 = C then we can see that x = x + pkck. We will show this here. 3 k Later we will show that span fc1;::: ckg = K and so we can think of the vectors fc1;::: ckg as a more useful basis for the Krylov space in that they allow us to avoid excessive storage.
Recommended publications
  • A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe Wu, Serge Petiton
    A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe Wu, Serge Petiton To cite this version: Xinzhe Wu, Serge Petiton. A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems. HPC Asia 2018 - International Conference on High Performance Computing in Asia-Pacific Region, Jan 2018, Tokyo, Japan. 10.1145/3149457.3154481. hal-01677110 HAL Id: hal-01677110 https://hal.archives-ouvertes.fr/hal-01677110 Submitted on 8 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe WU Serge G. Petiton Maison de la Simulation, USR 3441 Maison de la Simulation, USR 3441 CRIStAL, UMR CNRS 9189 CRIStAL, UMR CNRS 9189 Université de Lille 1, Sciences et Technologies Université de Lille 1, Sciences et Technologies F-91191, Gif-sur-Yvette, France F-91191, Gif-sur-Yvette, France [email protected] [email protected] ABSTRACT the iteration number. These methods are already well implemented Parallel Krylov Subspace Methods are commonly used for solv- in parallel to profit from the great number of computation cores ing large-scale sparse linear systems.
    [Show full text]
  • Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
    NASA Contractor Report 198342 /" ICASE Report No. 96-40 J ICA IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen NASA Contract No. NASI-19480 May 1996 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA 23681-0001 Operated by Universities Space Research Association National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen 1 Department of Computational and Applied Mathematics Rice University Houston, TX 77251 sorensen@rice, edu ABSTRACT Eigenvalues and eigenfunctions of linear operators are important to many areas of ap- plied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fu- eled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now avail- able, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large- scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case.
    [Show full text]
  • Krylov Subspaces
    Lab 1 Krylov Subspaces Lab Objective: Discuss simple Krylov Subspace Methods for finding eigenvalues and show some interesting applications. One of the biggest difficulties in computational linear algebra is the amount of memory needed to store a large matrix and the amount of time needed to read its entries. Methods using Krylov subspaces avoid this difficulty by studying how a matrix acts on vectors, making it unnecessary in many cases to create the matrix itself. More specifically, we can construct a Krylov subspace just by knowing how a linear transformation acts on vectors, and with these subspaces we can closely approximate eigenvalues of the transformation and solutions to associated linear systems. The Arnoldi iteration is an algorithm for finding an orthonormal basis of a Krylov subspace. Its outputs can also be used to approximate the eigenvalues of the original matrix. The Arnoldi Iteration The order-N Krylov subspace of A generated by x is 2 n−1 Kn(A; x) = spanfx;Ax;A x;:::;A xg: If the vectors fx;Ax;A2x;:::;An−1xg are linearly independent, then they form a basis for Kn(A; x). However, this basis is usually far from orthogonal, and hence computations using this basis will likely be ill-conditioned. One way to find an orthonormal basis for Kn(A; x) would be to use the modi- fied Gram-Schmidt algorithm from Lab TODO on the set fx;Ax;A2x;:::;An−1xg. More efficiently, the Arnold iteration integrates the creation of fx;Ax;A2x;:::;An−1xg with the modified Gram-Schmidt algorithm, returning an orthonormal basis for Kn(A; x).
    [Show full text]
  • Iterative Methods for Linear System
    Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline ●Basics: Matrices and their properties Eigenvalues, Condition Number ●Iterative Methods Direct and Indirect Methods ●Krylov Subspace Methods Ritz Galerkin: CG Minimum Residual Approach : GMRES/MINRES Petrov-Gaelerkin Method: BiCG, QMR, CGS 1st April JASS 2009 2 Basics ●Linear system of equations Ax = b ●A Hermitian matrix (or self-adjoint matrix ) is a square matrix with complex entries which is equal to its own conjugate transpose, 3 2 + i that is, the element in the ith row and jth column is equal to the A = complex conjugate of the element in the jth row and ith column, for 2 − i 1 all indices i and j • Symmetric if a ij = a ji • Positive definite if, for every nonzero vector x XTAx > 0 • Quadratic form: 1 f( x) === xTAx −−− bTx +++ c 2 ∂ f( x) • Gradient of Quadratic form: ∂x 1 1 1 f' (x) = ⋮ = ATx + Ax − b ∂ 2 2 f( x) ∂xn 1st April JASS 2009 3 Various quadratic forms Positive-definite Negative-definite matrix matrix Singular Indefinite positive-indefinite matrix matrix 1st April JASS 2009 4 Various quadratic forms 1st April JASS 2009 5 Eigenvalues and Eigenvectors For any n×n matrix A, a scalar λ and a nonzero vector v that satisfy the equation Av =λv are said to be the eigenvalue and the eigenvector of A. ●If the matrix is symmetric , then the following properties hold: (a) the eigenvalues of A are real (b) eigenvectors associated with distinct eigenvalues are orthogonal ●The matrix A is positive definite (or positive semidefinite) if and only if all eigenvalues of A are positive (or nonnegative).
    [Show full text]
  • Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
    https://ntrs.nasa.gov/search.jsp?R=19960048075 2020-06-16T03:31:45+00:00Z NASA Contractor Report 198342 /" ICASE Report No. 96-40 J ICA IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen NASA Contract No. NASI-19480 May 1996 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA 23681-0001 Operated by Universities Space Research Association National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen 1 Department of Computational and Applied Mathematics Rice University Houston, TX 77251 sorensen@rice, edu ABSTRACT Eigenvalues and eigenfunctions of linear operators are important to many areas of ap- plied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fu- eled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now avail- able, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large- scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class.
    [Show full text]
  • The Influence of Orthogonality on the Arnoldi Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 309 (2000) 307±323 www.elsevier.com/locate/laa The in¯uence of orthogonality on the Arnoldi method T. Braconnier *, P. Langlois, J.C. Rioual IREMIA, Universite de la Reunion, DeÂpartement de Mathematiques et Informatique, BP 7151, 15 Avenue Rene Cassin, 97715 Saint-Denis Messag Cedex 9, La Reunion, France Received 1 February 1999; accepted 22 May 1999 Submitted by J.L. Barlow Abstract Many algorithms for solving eigenproblems need to compute an orthonormal basis. The computation is commonly performed using a QR factorization computed using the classical or the modi®ed Gram±Schmidt algorithm, the Householder algorithm, the Givens algorithm or the Gram±Schmidt algorithm with iterative reorthogonalization. For the eigenproblem, although textbooks warn users about the possible instability of eigensolvers due to loss of orthonormality, few theoretical results exist. In this paper we prove that the loss of orthonormality of the computed basis can aect the reliability of the computed eigenpair when we use the Arnoldi method. We also show that the stopping criterion based on the backward error and the value computed using the Arnoldi method can dier because of the loss of orthonormality of the computed basis of the Krylov subspace. We also give a bound which quanti®es this dierence in terms of the loss of orthonormality. Ó 2000 Elsevier Science Inc. All rights reserved. Keywords: QR factorization; Backward error; Eigenvalues; Arnoldi method 1. Introduction The aim of the most commonly used eigensolvers is to approximate a basis of an invariant subspace associated with some eigenvalues.
    [Show full text]
  • Power Method and Krylov Subspaces
    Power method and Krylov subspaces Introduction When calculating an eigenvalue of a matrix A using the power method, one starts with an initial random vector b and then computes iteratively the sequence Ab, A2b,...,An−1b normalising and storing the result in b on each iteration. The sequence converges to the eigenvector of the largest eigenvalue of A. The set of vectors 2 n−1 Kn = b, Ab, A b,...,A b , (1) where n < rank(A), is called the order-n Krylov matrix, and the subspace spanned by these vectors is called the order-n Krylov subspace. The vectors are not orthogonal but can be made so e.g. by Gram-Schmidt orthogonalisation. For the same reason that An−1b approximates the dominant eigenvector one can expect that the other orthogonalised vectors approximate the eigenvectors of the n largest eigenvalues. Krylov subspaces are the basis of several successful iterative methods in numerical linear algebra, in particular: Arnoldi and Lanczos methods for finding one (or a few) eigenvalues of a matrix; and GMRES (Generalised Minimum RESidual) method for solving systems of linear equations. These methods are particularly suitable for large sparse matrices as they avoid matrix-matrix opera- tions but rather multiply vectors by matrices and work with the resulting vectors and matrices in Krylov subspaces of modest sizes. Arnoldi iteration Arnoldi iteration is an algorithm where the order-n orthogonalised Krylov matrix Qn of a matrix A is built using stabilised Gram-Schmidt process: • start with a set Q = {q1} of one random normalised vector q1 • repeat for k =2 to n : – make a new vector qk = Aqk−1 † – orthogonalise qk to all vectors qi ∈ Q storing qi qk → hi,k−1 – normalise qk storing qk → hk,k−1 – add qk to the set Q By construction the matrix Hn made of the elements hjk is an upper Hessenberg matrix, h1,1 h1,2 h1,3 ··· h1,n h2,1 h2,2 h2,3 ··· h2,n 0 h3,2 h3,3 ··· h3,n Hn = , (2) .
    [Show full text]
  • Finding Eigenvalues: Arnoldi Iteration and the QR Algorithm
    Finding Eigenvalues: Arnoldi Iteration and the QR Algorithm Will Wheeler Algorithms Interest Group Jul 13, 2016 Outline Finding the largest eigenvalue I Largest eigenvalue power method I So much work for one eigenvector. What about others? I More eigenvectors orthogonalize Krylov matrix I build orthogonal list Arnoldi iteration Solving the eigenvalue problem I Eigenvalues diagonal of triangular matrix I Triangular matrix QR algorithm I QR algorithm QR decomposition I Better QR decomposition Hessenberg matrix I Hessenberg matrix Arnoldi algorithm Power Method How do we find the largest eigenvalue of an m × m matrix A? I Start with a vector b and make a power sequence: b; Ab; A2b;::: I Higher eigenvalues dominate: n n n n A (v1 + v2) = λ1v1 + λ2v2 ≈ λ1v1 Vector sequence (normalized) converged? I Yes: Eigenvector I No: Iterate some more Krylov Matrix Power method throws away information along the way. I Put the sequence into a matrix K = [b; Ab; A2b;:::; An−1b] (1) = [xn; xn−1; xn−2;:::; x1] (2) I Gram-Schmidt approximates first n eigenvectors v1 = x1 (3) x2 · x1 v2 = x2 − x1 (4) x1 · x1 x3 · x1 x3 · x2 v3 = x3 − x1 − x2 (5) x1 · x1 x2 · x2 ::: (6) I Why not orthogonalize as we build the list? Arnoldi Iteration I Start with a normalized vector q1 xk = Aqk−1 (next power) (7) k−1 X yk = xk − (qj · xk ) qj (Gram-Schmidt) (8) j=1 qk = yk = jyk j (normalize) (9) I Orthonormal vectors fq1;:::; qng span Krylov subspace n−1 (Kn = spanfq1; Aq1;:::; A q1g) I These are not the eigenvectors of A, but make a similarity y (unitary) transformation Hn = QnAQn Arnoldi Iteration I Start with a normalized vector q1 xk = Aqk−1 (next power) (10) k−1 X yk = xk − (qj · xk ) qj (Gram-Schmidt) (11) j=1 qk = yk =jyk j (normalize) (12) I Orthonormal vectors fq1;:::; qng span Krylov subspace n−1 (Kn = spanfq1; Aq1;:::; A q1g) I These are not the eigenvectors of A, but make a similarity y (unitary) transformation Hn = QnAQn Arnoldi Iteration - Construct Hn We can construct the matrix Hn along the way.
    [Show full text]
  • LARGE-SCALE COMPUTATION of PSEUDOSPECTRA USING ARPACK and EIGS∗ 1. Introduction. the Matrices in Many Eigenvalue Problems
    SIAM J. SCI. COMPUT. c 2001 Society for Industrial and Applied Mathematics Vol. 23, No. 2, pp. 591–605 LARGE-SCALE COMPUTATION OF PSEUDOSPECTRA USING ARPACK AND EIGS∗ THOMAS G. WRIGHT† AND LLOYD N. TREFETHEN† Abstract. ARPACK and its Matlab counterpart, eigs, are software packages that calculate some eigenvalues of a large nonsymmetric matrix by Arnoldi iteration with implicit restarts. We show that at a small additional cost, which diminishes relatively as the matrix dimension increases, good estimates of pseudospectra in addition to eigenvalues can be obtained as a by-product. Thus in large- scale eigenvalue calculations it is feasible to obtain routinely not just eigenvalue approximations, but also information as to whether or not the eigenvalues are likely to be physically significant. Examples are presented for matrices with dimension up to 200,000. Key words. Arnoldi, ARPACK, eigenvalues, implicit restarting, pseudospectra AMS subject classifications. 65F15, 65F30, 65F50 PII. S106482750037322X 1. Introduction. The matrices in many eigenvalue problems are too large to allow direct computation of their full spectra, and two of the iterative tools available for computing a part of the spectrum are ARPACK [10, 11]and its Matlab counter- part, eigs.1 For nonsymmetric matrices, the mathematical basis of these packages is the Arnoldi iteration with implicit restarting [11, 23], which works by compressing the matrix to an “interesting” Hessenberg matrix, one which contains information about the eigenvalues and eigenvectors of interest. For general information on large-scale nonsymmetric matrix eigenvalue iterations, see [2, 21, 29, 31]. For some matrices, nonnormality (nonorthogonality of the eigenvectors) may be physically important [30].
    [Show full text]
  • Comparison of Numerical Methods and Open-Source Libraries for Eigenvalue Analysis of Large-Scale Power Systems
    applied sciences Article Comparison of Numerical Methods and Open-Source Libraries for Eigenvalue Analysis of Large-Scale Power Systems Georgios Tzounas , Ioannis Dassios * , Muyang Liu and Federico Milano School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (G.T.); [email protected] (M.L.); [email protected] (F.M.) * Correspondence: [email protected] Received: 30 September 2020; Accepted: 24 October 2020; Published: 28 October 2020 Abstract: This paper discusses the numerical solution of the generalized non-Hermitian eigenvalue problem. It provides a comprehensive comparison of existing algorithms, as well as of available free and open-source software tools, which are suitable for the solution of the eigenvalue problems that arise in the stability analysis of electric power systems. The paper focuses, in particular, on methods and software libraries that are able to handle the large-scale, non-symmetric matrices that arise in power system eigenvalue problems. These kinds of eigenvalue problems are particularly difficult for most numerical methods to handle. Thus, a review and fair comparison of existing algorithms and software tools is a valuable contribution for researchers and practitioners that are interested in power system dynamic analysis. The scalability and performance of the algorithms and libraries are duly discussed through case studies based on real-world electrical power networks. These are a model of the All-Island Irish Transmission System with 8640 variables; and, a model of the European Network of Transmission System Operators for Electricity, with 146,164 variables. Keywords: eigenvalue analysis; large non-Hermitian matrices; numerical methods; open-source libraries 1.
    [Show full text]
  • Eigenvalue Problems Last Time …
    Eigenvalue Problems Last Time … Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection 휆2, 푤2 Today … Small deviation into eigenvalue problems … Formulation Standard eigenvalue problem: Given a 푛 × 푛 matrix 퐴, find scalar 휆 and a nonzero vector 푥 such that 퐴푥 = 휆푥 휆 is a eigenvalue, and 푥 is the corresponding eigenvector Spectrum = 휆(퐴) = set of eigenvalues of 퐴 Spectral radius = 퐴 = max 휆 ∶ 휆 ∈ 휆 퐴 Characteristic Polynomial Equation 퐴푥 = 휆푥 is equivalent to 퐴 − 휆퐼 푥 = 0 Eigenvalues of 퐴 are roots of the characteristic polynomial det 퐴 − 휆퐼 = 0 The characteristic polynomial is a powerful theoretical tool but usually not useful computationally Considerations Properties of eigenvalue problem affecting choice of algorithm Are all eigenvalues needed, or only a few? Are only eigenvalues needed, or are corresponding eigenvectors also needed? Is matrix real or complex? Is matrix relatively small and dense, or large and sparse? Does matrix have any special properties, such as symmetry? Problem Transformations Shift: If 퐴푥 = 휆푥 and is any scalar, then 퐴 − 퐼 푥 = 휆 − 푥 1 Inversion: If 퐴 is nonsingular and 퐴푥 = 휆푥, then 휆 ≠ 0 and 퐴−1푥 = 푥 휆 Powers: If 퐴푥 = 휆푥, then 퐴푘푥 = 휆푘푥 Polynomial: If 퐴푥 = 휆푥 and 푝(푡) is a polynomial, then 푝 퐴 푥 = 푝 휆 푥 Similarity Transforms 퐵 is similar to 퐴 if there is a nonsingular matrix 푇, such that 퐵 = 푇−1퐴푇 Then, 퐵푦 = 휆푦 ⇒ 푇−1퐴푇푦 = 휆푦 ⇒ 퐴 푇푦 = 휆 푇푦 Similarity transformations preserve eigenvalues and eigenvectors are easily recovered Diagonal form Eigenvalues
    [Show full text]
  • Lecture 33. the Arnoldi Iteration
    Lecture 33. The Arnoldi Iteration Despite the many names and acronyms that have proliferated in the field of Krylov subspaee rnatrix iterations, these algorithrIls are built upon a eOIIlIIlon foundation of a few fuudarnental ideas. One can take various approaehes to describing this foundation. Ours will be to consider the Arnoldi proeess, a. Gram-Schmidt-style iteration for transforming a matrix to Hessenberg form. The Arnoldi/Gram-Schmidt Analogy Suppose, to pass the time while marooned on a desert island, you challenged yourself t.o devise an algoritlnll to reduce a nOllhermitian Illatrix to Hes.senberg form by orthogonal similarity transformations, proceeding column by column from a prescribed first column q,. To your surprise, you would probably find you could solve this problem in an hour and still have time to gather coconuts for dinner. The method you would come up with goes by the name of the Arnoldi iteration. If A is hermitian, the Hessenberg matrix becomes tridiagonal, an n-tcrm recurrence relation becomes a three-term recurrence relation, and the name changes to the Lanc:zos iteration, to be discussed in Lecture 36. Here is an analogy. For computing the QR factorization A = (JR of a llWtrix A, \ve have discussed t\'w methods in this book: Householder reflec- tions, which triangularhe A by a succession of orthogonal operations, and GraIn-Schmidt orthogonalization, which A by a succession of triangular operations. Though Householder reflections lead to a more nearly 250 LECTURE 33. THE ARNOLDI ITERATION 251 orthogonal matrix Q in the presence of rounding errors, the Gram Schmidt process has the advantage that it can be stopped part-way, leaving one with a reduced QR factorization of the first.
    [Show full text]