Eigenvalue Problems Last Time …

Total Page:16

File Type:pdf, Size:1020Kb

Eigenvalue Problems Last Time … Eigenvalue Problems Last Time … Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection 휆2, 푤2 Today … Small deviation into eigenvalue problems … Formulation Standard eigenvalue problem: Given a 푛 × 푛 matrix 퐴, find scalar 휆 and a nonzero vector 푥 such that 퐴푥 = 휆푥 휆 is a eigenvalue, and 푥 is the corresponding eigenvector Spectrum = 휆(퐴) = set of eigenvalues of 퐴 Spectral radius = 퐴 = max 휆 ∶ 휆 ∈ 휆 퐴 Characteristic Polynomial Equation 퐴푥 = 휆푥 is equivalent to 퐴 − 휆퐼 푥 = 0 Eigenvalues of 퐴 are roots of the characteristic polynomial det 퐴 − 휆퐼 = 0 The characteristic polynomial is a powerful theoretical tool but usually not useful computationally Considerations Properties of eigenvalue problem affecting choice of algorithm Are all eigenvalues needed, or only a few? Are only eigenvalues needed, or are corresponding eigenvectors also needed? Is matrix real or complex? Is matrix relatively small and dense, or large and sparse? Does matrix have any special properties, such as symmetry? Problem Transformations Shift: If 퐴푥 = 휆푥 and is any scalar, then 퐴 − 퐼 푥 = 휆 − 푥 1 Inversion: If 퐴 is nonsingular and 퐴푥 = 휆푥, then 휆 ≠ 0 and 퐴−1푥 = 푥 휆 Powers: If 퐴푥 = 휆푥, then 퐴푘푥 = 휆푘푥 Polynomial: If 퐴푥 = 휆푥 and 푝(푡) is a polynomial, then 푝 퐴 푥 = 푝 휆 푥 Similarity Transforms 퐵 is similar to 퐴 if there is a nonsingular matrix 푇, such that 퐵 = 푇−1퐴푇 Then, 퐵푦 = 휆푦 ⇒ 푇−1퐴푇푦 = 휆푦 ⇒ 퐴 푇푦 = 휆 푇푦 Similarity transformations preserve eigenvalues and eigenvectors are easily recovered Diagonal form Eigenvalues of a diagonal matrix are the diagonal entries and the eigenvectors are columns of the Identity matrix The diagonal form is highly desirable in simplifying eigenvalue problems for general matrices by similarity transformations But not all matrices are diagonalizable by similarity transformations Triangular form Any matrix can be transformed into a triangular form by similarity The eigenvalues are simply the diagonal values Eigenvectors are not as obvious, but still easy to compute Power iteration Simplest method for computing one eigenvalue-eigenvector pair 푥푘 = 퐴푥푘−1 Converges to multiple of eigenvector corresponding to dominant eigenvalue We have seen this before while computing the Page Rank Proof of convergence ? Convergence of Power iteration Express starting vector 푥0 in terms of the eigenvectors of 퐴 푛 푥0 = 훼푖 풗푖 푖=1 Then, 2 푘 푥푘 = 퐴푥푘−1 = 퐴 푥푘−2 = ⋯ = 퐴 푥0 푛 푛−1 푘 푘 푘 휆푖 휆푖 훼푖풗푖 = 휆푛 훼푛풗푛 + 훼푖풗푖 휆푛 푖=1 푖=1 휆 Since 푖 < 1, successively higher powers go to zero 휆푛 Power iteration with shift 휆 Convergence rate of power iteration depends on the ratio 푛−1 휆푛 It is possible to choose a shift, 퐴 − 퐼, such that 휆 − 휆 푛−1 < 푛−1 휆푛 − 휆푛 so convergence is accelerated Shift must be added back to result to obtain eigenvalue of original matrix Inverse iteration If the smallest eigenvalues are required rather than the largest, we can make use of the fact that the eigenvalues of 퐴−1 are reciprocals of those of 퐴, so the smallest eigenvalue of 퐴 is the reciprocal of the largest eigenvalue of 퐴−1 This leads to the inverse iteration scheme 퐴푦푘 = 푥푘−1 푥푘 = 푦푘/ 푦푘 ∞ Inverse of 퐴 is not computed explicitly, but some factorization of 퐴 is used to solve the system at each iteration Shifted inverse iteration As before, the shifting strategy using a scalar can greatly improve convergence It is particularly useful for computing the eigenvector corresponding to the approximate eigenvalue Inverse iteration is also useful for computing the eigenvalue closest to a given value 훽, since if 훽 is used as the shift, then the desired eigenvalue corresponds to the smallest eigenvalue of the shifted matrix Deflation Once the dominant eigenvalue and eigenvector 휆푛, 푤푛 have been computed, the remaining eigenvalues can be computed using deflation, which effectively removes the known eigenvalue Let 퐻 be any nonsingular matrix such that 퐻푥 = 훼푒1 Then the similarity transform determined by 퐻 transforms 퐴 into, 푇 퐻퐴퐻−1 = 휆푛 푏 0 퐵 Can now work with 퐵 to compute the next eigenvalue, Process can be repeated to find additional eigenvalues and eigenvectors Deflation 푇 Alternate approach: let 푢푛 be any vector such that 푢푛푤푛 = 휆푛 푇 Then 퐴 − 푤푛푢푛 has eigenvalues 휆푛−1, … , 휆1, 0 Possible choices for 푢푛 푢푛 = 휆푛푤푛, if 퐴 is symmetric and 푤푛 is normalized so that 푤푛 2 = 1 푇 푢푛 = 휆푛푦푛, where 푦푛 is the corresponding left eigenvector (퐴 푦푛 = 휆푛푦푛) 푇 푡ℎ 푢푛 = 퐴 푒푘, if 푤푛 is normalized such that 푤푛 ∞ = 1 and the 푘 component of 푤푛 is 1 QR Iteration Iteratively converges to a triangular or block-triangular form, yielding all eigenvalues of 퐴 Starting with 퐴0 = 퐴, at iteration 푘 compute QR factorization, 푄푘푅푘 = 퐴푘−1 And form the reverse product, 퐴푘 = 푅푘푄푘 Product of orthogonal matrices 푄푘 converges to matrix of corresponding eigenvectors If 퐴 is symmetric, then symmetry is preserved by the QR iteration, so 퐴푘 converges to a matrix that is both symmetric and triangular diagonal Preliminary reductions Efficiency of QR iteration can be enhanced by first transforming the matrix to be as close to triangular form as possible Hessenberg matrix is triangular except for one additional nonzero diagonal immediately adjacent to the main diagonal Symmetric Hessenberg matrix is tridiagonal Any matrix can be reduced to Hessenberg form in finite number of steps using Householder transformations Work per iteration is reduced from 풪 푛3 to 풪(푛2) for general matrices and 풪(푛) for symmetric matrices Krylov subspace methods Reduces matrix to Hessenberg or tridiagonal form using only matrix- vector products For arbitrary starting vector 푥0, if 푘−1 퐾푘 = 푥0 퐴푥0 ⋯ 퐴 푥0 then −1 퐾푛 퐴퐾푛 = 퐶푛 where 퐶푛 is upper Hessenberg To obtain a better conditioned basis for span(퐾푛), compute the QR factorization, 푄푛푅푛 = 퐾푛 so that 퐻 −1 푄푛 퐴푄푛 = 푅푛퐶푛푅푛 ≡ 퐻 with 퐻 is upper Hessenberg Krylov subspace methods 푡ℎ Equating 푘 columns on each side of the equation 퐴푄푛 = 푄푛퐻 yields 퐴푞푘 = ℎ1푘푞1 + ⋯ + ℎ푘푘푞푘 + ℎ푘+1,푘푞푘+1 relating 푞푘+1 to preceding vectors 푞1, … , 푞푘 퐻 Premultiplying by 푞푗 and using orthonormality 퐻 ℎ푗푘 = 푞푗 퐴푞푘, 푗 = 1, … , 푘 These relationships yield the Arnoldi iteration Arnoldi iteration 푥0 : arbitrary nonzero starting vector 푞1 = 푥0/ 푥0 2 for 푘 = 1,2, … 푢푘 = 퐴푞푘 for 푗 = 1 to 푘 퐻 ℎ푗푘 = 푞푗 푢푘 푢푘 = 푢푘 − ℎ푗푘푞푗 ℎ푘+1,푘 = 푢푘 2 if ℎ푘+1,푘 = 0 then stop 푞푘+1 = 푢푘/ℎ푘+1,푘 Arnoldi iteration If 푄푘 = 푞1 ⋯ 푞푘 then 퐻 퐻푘 = 푄푘 퐴푄푘 is a upper Hessenberg matrix Eigenvalues of 퐻푘, called Ritz values, are approximate eigenvalues of 퐴, and Ritz vectors given by 푄푘푦, where 푦 is an eigenvector of 퐻푘, are corresponding approximate eigenvectors of 퐴 Eigenvalues of 퐻푘 must be computed by another method, such as QR iteration, but this is an easier problem as 푘 ≪ 푛 Arnoldi iteration Is fairly expensive in both work and storage because each new vector 푞푘 must be orthogonalized against all previous columns of 푄푘, and all must be stored for that purpose Is usually restarted periodically with a carefully chosen starting vector Ritz vectors and values produced are often good approximations to eigenvalues and eigenvectors of 퐴 after relatively few iterations Lanczos iteration Work and storage costs drop dramatically if the matrix is symmetric or Hermitian, since the recurrence has only three terms and 퐻푘 is tridiagonal 푞0, 훽0 = 0 and 푥0 = arbitrary nonzero starting vector 푞1 = 푥0/ 푥0 2 for 푘 = 1,2, … 푢푘 = 퐴푞푘 퐻 훼푘 = 푞푘 푢푘 푢푘 = 푢푘 − 훽푘−1푞푘−1 − 훼푘푞푘 훽푘 = 푢푘 2 if 훽푘 = 0 then stop 푞푘+1 = 푢푘/훽푘 Lanczos iteration 훼푘 and 훽푘 are diagonal and subdiagonal entries of symmetric tridiagonal matrix 푇푘 As with Arnoldi, Lanczos does not produce eigenvalues and eigenvectors directly, but only the tridiagonal matrix 푇푘, whose eigenvalues and eigenvectors must be computed by another method to obtain Ritz values and vectors If 훽 = 0, then the invariant subspace has already been identified, i.e., the Ritz values and vectors are already exact at that point Lanczos iteration In principle, if we let Lanczos run until 푘 = 푛, the resulting tridiagonal matrix would be orthogonally similar to 퐴 In practice, rounding errors cause loss of orthogonality Problem can be overcome by reorthogonalizing vectors In practice, this is usually ignored. The resulting approximations are still good Krylov subspace methods Great advantage of Arnoldi and Lanczos is their ability to produce good approximations to extreme eigenvalues for 푘 ≪ 푛 They only require one matrix-vector product per step and little auxiliary storage, so are ideally suited for large sparse matrices If eigenvalues are needed in the middle of the spectrum, say near , then the algorithms can be applied to 퐴 − 퐼 −1, assuming it is practical to solve systems of the form 퐴 − 퐼 푥 = 푦.
Recommended publications
  • A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe Wu, Serge Petiton
    A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe Wu, Serge Petiton To cite this version: Xinzhe Wu, Serge Petiton. A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems. HPC Asia 2018 - International Conference on High Performance Computing in Asia-Pacific Region, Jan 2018, Tokyo, Japan. 10.1145/3149457.3154481. hal-01677110 HAL Id: hal-01677110 https://hal.archives-ouvertes.fr/hal-01677110 Submitted on 8 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe WU Serge G. Petiton Maison de la Simulation, USR 3441 Maison de la Simulation, USR 3441 CRIStAL, UMR CNRS 9189 CRIStAL, UMR CNRS 9189 Université de Lille 1, Sciences et Technologies Université de Lille 1, Sciences et Technologies F-91191, Gif-sur-Yvette, France F-91191, Gif-sur-Yvette, France [email protected] [email protected] ABSTRACT the iteration number. These methods are already well implemented Parallel Krylov Subspace Methods are commonly used for solv- in parallel to profit from the great number of computation cores ing large-scale sparse linear systems.
    [Show full text]
  • Efficient Algorithms for High-Dimensional Eigenvalue
    Efficient Algorithms for High-dimensional Eigenvalue Problems by Zhe Wang Department of Mathematics Duke University Date: Approved: Jianfeng Lu, Advisor Xiuyuan Cheng Jonathon Mattingly Weitao Yang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2020 ABSTRACT Efficient Algorithms for High-dimensional Eigenvalue Problems by Zhe Wang Department of Mathematics Duke University Date: Approved: Jianfeng Lu, Advisor Xiuyuan Cheng Jonathon Mattingly Weitao Yang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2020 Copyright © 2020 by Zhe Wang All rights reserved Abstract The eigenvalue problem is a traditional mathematical problem and has a wide appli- cations. Although there are many algorithms and theories, it is still challenging to solve the leading eigenvalue problem of extreme high dimension. Full configuration interaction (FCI) problem in quantum chemistry is such a problem. This thesis tries to understand some existing algorithms of FCI problem and propose new efficient algorithms for the high-dimensional eigenvalue problem. In more details, we first es- tablish a general framework of inexact power iteration and establish the convergence theorem of full configuration interaction quantum Monte Carlo (FCIQMC) and fast randomized iteration (FRI). Second, we reformulate the leading eigenvalue problem as an optimization problem, then compare the show the convergence of several coor- dinate descent methods (CDM) to solve the leading eigenvalue problem. Third, we propose a new efficient algorithm named Coordinate descent FCI (CDFCI) based on coordinate descent methods to solve the FCI problem, which produces some state-of- the-art results.
    [Show full text]
  • Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
    NASA Contractor Report 198342 /" ICASE Report No. 96-40 J ICA IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen NASA Contract No. NASI-19480 May 1996 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA 23681-0001 Operated by Universities Space Research Association National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen 1 Department of Computational and Applied Mathematics Rice University Houston, TX 77251 sorensen@rice, edu ABSTRACT Eigenvalues and eigenfunctions of linear operators are important to many areas of ap- plied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fu- eled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now avail- able, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large- scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case.
    [Show full text]
  • Krylov Subspaces
    Lab 1 Krylov Subspaces Lab Objective: Discuss simple Krylov Subspace Methods for finding eigenvalues and show some interesting applications. One of the biggest difficulties in computational linear algebra is the amount of memory needed to store a large matrix and the amount of time needed to read its entries. Methods using Krylov subspaces avoid this difficulty by studying how a matrix acts on vectors, making it unnecessary in many cases to create the matrix itself. More specifically, we can construct a Krylov subspace just by knowing how a linear transformation acts on vectors, and with these subspaces we can closely approximate eigenvalues of the transformation and solutions to associated linear systems. The Arnoldi iteration is an algorithm for finding an orthonormal basis of a Krylov subspace. Its outputs can also be used to approximate the eigenvalues of the original matrix. The Arnoldi Iteration The order-N Krylov subspace of A generated by x is 2 n−1 Kn(A; x) = spanfx;Ax;A x;:::;A xg: If the vectors fx;Ax;A2x;:::;An−1xg are linearly independent, then they form a basis for Kn(A; x). However, this basis is usually far from orthogonal, and hence computations using this basis will likely be ill-conditioned. One way to find an orthonormal basis for Kn(A; x) would be to use the modi- fied Gram-Schmidt algorithm from Lab TODO on the set fx;Ax;A2x;:::;An−1xg. More efficiently, the Arnold iteration integrates the creation of fx;Ax;A2x;:::;An−1xg with the modified Gram-Schmidt algorithm, returning an orthonormal basis for Kn(A; x).
    [Show full text]
  • Iterative Methods for Linear System
    Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline ●Basics: Matrices and their properties Eigenvalues, Condition Number ●Iterative Methods Direct and Indirect Methods ●Krylov Subspace Methods Ritz Galerkin: CG Minimum Residual Approach : GMRES/MINRES Petrov-Gaelerkin Method: BiCG, QMR, CGS 1st April JASS 2009 2 Basics ●Linear system of equations Ax = b ●A Hermitian matrix (or self-adjoint matrix ) is a square matrix with complex entries which is equal to its own conjugate transpose, 3 2 + i that is, the element in the ith row and jth column is equal to the A = complex conjugate of the element in the jth row and ith column, for 2 − i 1 all indices i and j • Symmetric if a ij = a ji • Positive definite if, for every nonzero vector x XTAx > 0 • Quadratic form: 1 f( x) === xTAx −−− bTx +++ c 2 ∂ f( x) • Gradient of Quadratic form: ∂x 1 1 1 f' (x) = ⋮ = ATx + Ax − b ∂ 2 2 f( x) ∂xn 1st April JASS 2009 3 Various quadratic forms Positive-definite Negative-definite matrix matrix Singular Indefinite positive-indefinite matrix matrix 1st April JASS 2009 4 Various quadratic forms 1st April JASS 2009 5 Eigenvalues and Eigenvectors For any n×n matrix A, a scalar λ and a nonzero vector v that satisfy the equation Av =λv are said to be the eigenvalue and the eigenvector of A. ●If the matrix is symmetric , then the following properties hold: (a) the eigenvalues of A are real (b) eigenvectors associated with distinct eigenvalues are orthogonal ●The matrix A is positive definite (or positive semidefinite) if and only if all eigenvalues of A are positive (or nonnegative).
    [Show full text]
  • Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
    https://ntrs.nasa.gov/search.jsp?R=19960048075 2020-06-16T03:31:45+00:00Z NASA Contractor Report 198342 /" ICASE Report No. 96-40 J ICA IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen NASA Contract No. NASI-19480 May 1996 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA 23681-0001 Operated by Universities Space Research Association National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen 1 Department of Computational and Applied Mathematics Rice University Houston, TX 77251 sorensen@rice, edu ABSTRACT Eigenvalues and eigenfunctions of linear operators are important to many areas of ap- plied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fu- eled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now avail- able, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large- scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class.
    [Show full text]
  • Accelerated Stochastic Power Iteration
    Accelerated Stochastic Power Iteration CHRISTOPHER DE SAy BRYAN HEy IOANNIS MITLIAGKASy CHRISTOPHER RE´ y PENG XU∗ yDepartment of Computer Science, Stanford University ∗Institute for Computational and Mathematical Engineering, Stanford University cdesa,bryanhe,[email protected], [email protected], [email protected] July 11, 2017 Abstract Principal component analysis (PCA) is one of the most powerful tools in machine learning. The simplest method for PCA, the power iteration, requires O(1=∆) full-data passes to recover the principal component of a matrix withp eigen-gap ∆. Lanczos, a significantly more complex method, achieves an accelerated rate of O(1= ∆) passes. Modern applications, however, motivate methods that only ingest a subset of available data, known as the stochastic setting. In the online stochastic setting, simple 2 2 algorithms like Oja’s iteration achieve the optimal sample complexity O(σ =p∆ ). Unfortunately, they are fully sequential, and also require O(σ2=∆2) iterations, far from the O(1= ∆) rate of Lanczos. We propose a simple variant of the power iteration with an added momentum term, that achieves both the optimal sample and iteration complexity.p In the full-pass setting, standard analysis shows that momentum achieves the accelerated rate, O(1= ∆). We demonstrate empirically that naively applying momentum to a stochastic method, does not result in acceleration. We perform a novel, tight variance analysis that reveals the “breaking-point variance” beyond which this acceleration does not occur. By combining this insight with modern variance reduction techniques, we construct stochastic PCAp algorithms, for the online and offline setting, that achieve an accelerated iteration complexity O(1= ∆).
    [Show full text]
  • The Influence of Orthogonality on the Arnoldi Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 309 (2000) 307±323 www.elsevier.com/locate/laa The in¯uence of orthogonality on the Arnoldi method T. Braconnier *, P. Langlois, J.C. Rioual IREMIA, Universite de la Reunion, DeÂpartement de Mathematiques et Informatique, BP 7151, 15 Avenue Rene Cassin, 97715 Saint-Denis Messag Cedex 9, La Reunion, France Received 1 February 1999; accepted 22 May 1999 Submitted by J.L. Barlow Abstract Many algorithms for solving eigenproblems need to compute an orthonormal basis. The computation is commonly performed using a QR factorization computed using the classical or the modi®ed Gram±Schmidt algorithm, the Householder algorithm, the Givens algorithm or the Gram±Schmidt algorithm with iterative reorthogonalization. For the eigenproblem, although textbooks warn users about the possible instability of eigensolvers due to loss of orthonormality, few theoretical results exist. In this paper we prove that the loss of orthonormality of the computed basis can aect the reliability of the computed eigenpair when we use the Arnoldi method. We also show that the stopping criterion based on the backward error and the value computed using the Arnoldi method can dier because of the loss of orthonormality of the computed basis of the Krylov subspace. We also give a bound which quanti®es this dierence in terms of the loss of orthonormality. Ó 2000 Elsevier Science Inc. All rights reserved. Keywords: QR factorization; Backward error; Eigenvalues; Arnoldi method 1. Introduction The aim of the most commonly used eigensolvers is to approximate a basis of an invariant subspace associated with some eigenvalues.
    [Show full text]
  • Numerical Linear Algebra Program Lecture 4 Basic Methods For
    Program Lecture 4 Numerical Linear Algebra • Basic methods for eigenproblems. Basic iterative methods • Power method • Shift-and-invert Power method • QR algorithm • Basic iterative methods for linear systems • Richardson’s method • Jacobi, Gauss-Seidel and SOR • Iterative refinement Gerard Sleijpen and Martin van Gijzen • Steepest decent and the Minimal residual method October 5, 2016 1 October 5, 2016 2 National Master Course National Master Course Delft University of Technology Basic methods for eigenproblems The Power method The eigenvalue problem The Power method is the classical method to compute in modulus largest eigenvalue and associated eigenvector of a Av = λv matrix. can not be solved in a direct way for problems of order > 4, since Multiplying with a matrix amplifies strongest the eigendirection the eigenvalues are the roots of the characteristic equation corresponding to the in modulus largest eigenvalues. det(A − λI) = 0. Successively multiplying and scaling (to avoid overflow or underflow) yields a vector in which the direction of the largest Today we will discuss two iterative methods for solving the eigenvector becomes more and more dominant. eigenproblem. October 5, 2016 3 October 5, 2016 4 National Master Course National Master Course Algorithm Convergence (1) The Power method for an n × n matrix A. Let the n eigenvalues λi with eigenvectors vi, Avi = λivi, be n ordered such that |λ1| ≥ |λ2|≥ . ≥ |λn|. u0 ∈ C is given • Assume the eigenvectors v ,..., vn form a basis. for k = 1, 2, ... 1 • Assume |λ1| > |λ2|. uk = Auk−1 Each arbitrary starting vector u0 can be written as: uk = uk/kukk2 e(k) ∗ λ = uk−1uk u0 = α1v1 + α2v2 + ..
    [Show full text]
  • Power Method and Krylov Subspaces
    Power method and Krylov subspaces Introduction When calculating an eigenvalue of a matrix A using the power method, one starts with an initial random vector b and then computes iteratively the sequence Ab, A2b,...,An−1b normalising and storing the result in b on each iteration. The sequence converges to the eigenvector of the largest eigenvalue of A. The set of vectors 2 n−1 Kn = b, Ab, A b,...,A b , (1) where n < rank(A), is called the order-n Krylov matrix, and the subspace spanned by these vectors is called the order-n Krylov subspace. The vectors are not orthogonal but can be made so e.g. by Gram-Schmidt orthogonalisation. For the same reason that An−1b approximates the dominant eigenvector one can expect that the other orthogonalised vectors approximate the eigenvectors of the n largest eigenvalues. Krylov subspaces are the basis of several successful iterative methods in numerical linear algebra, in particular: Arnoldi and Lanczos methods for finding one (or a few) eigenvalues of a matrix; and GMRES (Generalised Minimum RESidual) method for solving systems of linear equations. These methods are particularly suitable for large sparse matrices as they avoid matrix-matrix opera- tions but rather multiply vectors by matrices and work with the resulting vectors and matrices in Krylov subspaces of modest sizes. Arnoldi iteration Arnoldi iteration is an algorithm where the order-n orthogonalised Krylov matrix Qn of a matrix A is built using stabilised Gram-Schmidt process: • start with a set Q = {q1} of one random normalised vector q1 • repeat for k =2 to n : – make a new vector qk = Aqk−1 † – orthogonalise qk to all vectors qi ∈ Q storing qi qk → hi,k−1 – normalise qk storing qk → hk,k−1 – add qk to the set Q By construction the matrix Hn made of the elements hjk is an upper Hessenberg matrix, h1,1 h1,2 h1,3 ··· h1,n h2,1 h2,2 h2,3 ··· h2,n 0 h3,2 h3,3 ··· h3,n Hn = , (2) .
    [Show full text]
  • Finding Eigenvalues: Arnoldi Iteration and the QR Algorithm
    Finding Eigenvalues: Arnoldi Iteration and the QR Algorithm Will Wheeler Algorithms Interest Group Jul 13, 2016 Outline Finding the largest eigenvalue I Largest eigenvalue power method I So much work for one eigenvector. What about others? I More eigenvectors orthogonalize Krylov matrix I build orthogonal list Arnoldi iteration Solving the eigenvalue problem I Eigenvalues diagonal of triangular matrix I Triangular matrix QR algorithm I QR algorithm QR decomposition I Better QR decomposition Hessenberg matrix I Hessenberg matrix Arnoldi algorithm Power Method How do we find the largest eigenvalue of an m × m matrix A? I Start with a vector b and make a power sequence: b; Ab; A2b;::: I Higher eigenvalues dominate: n n n n A (v1 + v2) = λ1v1 + λ2v2 ≈ λ1v1 Vector sequence (normalized) converged? I Yes: Eigenvector I No: Iterate some more Krylov Matrix Power method throws away information along the way. I Put the sequence into a matrix K = [b; Ab; A2b;:::; An−1b] (1) = [xn; xn−1; xn−2;:::; x1] (2) I Gram-Schmidt approximates first n eigenvectors v1 = x1 (3) x2 · x1 v2 = x2 − x1 (4) x1 · x1 x3 · x1 x3 · x2 v3 = x3 − x1 − x2 (5) x1 · x1 x2 · x2 ::: (6) I Why not orthogonalize as we build the list? Arnoldi Iteration I Start with a normalized vector q1 xk = Aqk−1 (next power) (7) k−1 X yk = xk − (qj · xk ) qj (Gram-Schmidt) (8) j=1 qk = yk = jyk j (normalize) (9) I Orthonormal vectors fq1;:::; qng span Krylov subspace n−1 (Kn = spanfq1; Aq1;:::; A q1g) I These are not the eigenvectors of A, but make a similarity y (unitary) transformation Hn = QnAQn Arnoldi Iteration I Start with a normalized vector q1 xk = Aqk−1 (next power) (10) k−1 X yk = xk − (qj · xk ) qj (Gram-Schmidt) (11) j=1 qk = yk =jyk j (normalize) (12) I Orthonormal vectors fq1;:::; qng span Krylov subspace n−1 (Kn = spanfq1; Aq1;:::; A q1g) I These are not the eigenvectors of A, but make a similarity y (unitary) transformation Hn = QnAQn Arnoldi Iteration - Construct Hn We can construct the matrix Hn along the way.
    [Show full text]
  • Arxiv:1105.1185V1 [Math.NA] 5 May 2011 Ento 2.2
    ITERATIVE METHODS FOR COMPUTING EIGENVALUES AND EIGENVECTORS MAYSUM PANJU Abstract. We examine some numerical iterative methods for computing the eigenvalues and eigenvectors of real matrices. The five methods examined here range from the simple power iteration method to the more complicated QR iteration method. The derivations, procedure, and advantages of each method are briefly discussed. 1. Introduction Eigenvalues and eigenvectors play an important part in the applications of linear algebra. The naive method of finding the eigenvalues of a matrix involves finding the roots of the characteristic polynomial of the matrix. In industrial sized matrices, however, this method is not feasible, and the eigenvalues must be obtained by other means. Fortunately, there exist several other techniques for finding eigenvalues and eigenvectors of a matrix, some of which fall under the realm of iterative methods. These methods work by repeatedly refining approximations to the eigenvectors or eigenvalues, and can be terminated whenever the approximations reach a suitable degree of accuracy. Iterative methods form the basis of much of modern day eigenvalue computation. In this paper, we outline five such iterative methods, and summarize their derivations, procedures, and advantages. The methods to be examined are the power iteration method, the shifted inverse iteration method, the Rayleigh quotient method, the simultaneous iteration method, and the QR method. This paper is meant to be a survey over existing algorithms for the eigenvalue computation problem. Section 2 of this paper provides a brief review of some of the linear algebra background required to understand the concepts that are discussed. In section 3, the iterative methods are each presented, in order of complexity, and are studied in brief detail.
    [Show full text]