Extensions of the Standard Model Higgs Sector

Total Page:16

File Type:pdf, Size:1020Kb

Extensions of the Standard Model Higgs Sector W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2018 Extensions of the Standard Model Higgs Sector Richard Keith Thrasher College of William and Mary - Arts & Sciences, [email protected] Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Physics Commons Recommended Citation Thrasher, Richard Keith, "Extensions of the Standard Model Higgs Sector" (2018). Dissertations, Theses, and Masters Projects. Paper 1550153848. http://dx.doi.org/10.21220/s2-fv3j-pk17 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Extensions of the Standard Model Higgs Sector Richard Thrasher Virginia Beach, Virginia Master of Science, College of William & Mary, 2015 Bachelor of Science, James Madison University, 2013 ADissertationpresentedtotheGraduateFaculty of The College of William & Mary in Candidacy for the Degree of Doctor of Philosophy Department of Physics College of William & Mary August 2018 c 2018 Richard Thrasher All Rights Reserved Attribution-NonCommercial (CC BY-NC) ABSTRACT The Standard Model is regarded as one of the most successful scientific theories, but there is compelling evidence that it is an incomplete theory of particle physics. There is currently no understanding of the observed baryon asymmetry, the nature of dark matter, and dark energy. Field theoretic considerations indicate parameters in the Standard Model are extremely fine-tuned. This suggests the existence of new physics, accessible at higher energies, to explain these seemingly unnatural tunings. To solve these puzzles, and others not addressed by the Standard Model, many extensions of the Standard Model have been proposed. It is of great importance that we fully understand the e↵ects these models have on Standard Model physics and how these theories can be tested. In this dissertation we explore the phenomenology associated with beyond the Standard Model physics, specifically focusing on models with extended Higgs sectors. In chapter 2, we study two classes of lepton flavor violating two Higgs doublet models. Chapter 3 explores a model where the Higgs is a pseudo-Goldstone boson of a non-abelian orbifold projection and all other low energy states carry no Standard Model charges. Chapters 4 and 5 study Higgs phenomenology in the context of a warped five dimensional space-time. The former analyzes the e↵ects of Higgs-radion mixing in two Higgs doublet models. The latter reviews a previous proposal where the Higgs doublet takes the role of a bulk stabilizer. The result is a model containing a single Higgs-radion state. In the final chapter, we present a higher derivative extension of the type-I and II two Higgs doublet models. The resulting theory gives rise to unusual partner states containing negative kinetic energy terms. TABLE OF CONTENTS Acknowledgements .................................................................... iv Dedication.............................................................................. v List of Tables .......................................................................... vi List of Figures ......................................................................... vii 1Introduction........................................................................ 1 1.1 The Standard Model Higgs ................................................ 2 1.2 The Hierarchy Problem .................................................... 4 1.3 Thesis Contents ............................................................. 8 2 Lepton Flavor Violating Higgs Decays......................................... 10 2.1 Introduction.................................................................. 10 2.2 The Type III model......................................................... 13 2.3 The BGL Model ............................................................. 17 2.4 Results ........................................................................ 20 3 S3 Orbifold Higgs ................................................................. 23 3.1 Introduction.................................................................. 23 3.2 Twin Higgs Review ......................................................... 25 3.3 Building an Orbifold Higgs Model........................................ 26 3.3.1 Field Theory Orbifolds ............................................. 26 3.3.2 Orbifold Higgs ....................................................... 28 3.4 S3-Orbifold Higgs .......................................................... 31 3.4.1 U(1) Daughter Gauge Fields ...................................... 34 3.5 Phenomenology .............................................................. 34 3.6 Results and Future Prospects ............................................. 40 4 Radion-Higgs Mixing in 2HDMs ................................................ 42 4.1 Introduction.................................................................. 42 4.2 Model Description ......................................................... 46 i 4.2.1 The Custodial RS Model ......................................... 46 4.2.2 The Two-Higgs Doublet Model ................................... 49 4.2.3 The Radion Field .................................................. 54 4.3 Two Higgs-radion Mixing .................................................. 59 4.4 Model Predictions ........................................................... 62 4.4.1 Constraints From Current LHC Higgs Data .................... 62 4.4.2 Collider Signals...................................................... 65 4.4.3 Constraints From Heavy Higgs searches......................... 67 4.5 Conclusions .................................................................. 75 5 Higgs Radion Unification ........................................................ 77 5.1 Introduction.................................................................. 77 5.2 The Higgs-Radion Model .................................................. 78 5.2.1 The Higgs-Radion Mass............................................ 83 5.2.2 Higgs-Radion Interactions ......................................... 84 5.3 Conclusions .................................................................. 86 6 Lee-Wick 2HDM .................................................................. 88 6.1 Introduction.................................................................. 88 6.2 The Lee-Wick Standard Model Higgs Sector ........................... 90 6.3 The LW Two-Higgs Doublet Model ...................................... 92 6.4 Low Energy Constraints ................................................... 98 6.4.1 B+ ⌧ +⌫ ........................................................ 98 ! ⌧ 6.4.2 BdB¯d mixing .........................................................100 6.4.3 B X γ .........................................................102 ! s 6.5 Results and Future Prospects .............................................106 7Conclusions........................................................................108 Appendices ............................................................................110 A S3 Orbifold Higgs Appendix.....................................................110 B Radion-Higgs Mixing in 2HDMs Appendix ...................................112 B.1 Scalar Couplings After Mixing ............................................112 ii B.2 LHC Data ....................................................................116 C Lee-Wick Extension of the Two-Higgs Doublet Model Appendix .........117 References ..............................................................................120 iii ACKNOWLEDGEMENTS The work presented in this dissertation would not have been possible without the patience and guidance of Marc Sher. Many thanks are owed to Marco Merchand and Aria Johansen for whom I had the pleasure of collaborating with, as well as Joshua Erlich and Christopher Carone for their instruction and imparted wisdom. Most importantly, I would like to thank my close friends Connor Comstock, Daniel Kapec, Kyle Eskridge, Kaitlyn Fohl, and Brendan Sostak for the encouragement they provided throughout my time in graduate school. iv This dissertation is dedicated to all who have helped me along the way. v LIST OF TABLES 2.1 Decay widths of for the heavy scalar Higgs , H in the (⌫j,uk)-type BGL models. ................................................................. 21 2.2 Decay widths of for the pseudoscalar Higgs A in the (⌫j,uk)-type BGL models. ................................................................. 21 3.1 Matter fields in the parent theory. ....................................... 28 3.2 A summary of common SM Higgs boson decays[78] that we will consider in our analysis of the SM-like Higgs decays into b and c-sector states. The δV , RT ,andAX functions are defined in the Appendix. ................................................................... 36 4.1 Scalar couplings to pairs of fermions. .................................... 53 5.1 Couplings of hr to gauge bosons and fermions.......................... 85 5.2 The Higgs-radion and the SM Higgs branching ratios and total width. The SM values are taken from [155] ............................. 85 6.1 Yukawa couplings of the quarks to the Higgs bosons. Angles 1 and 2 are the symplectic rotations needed
Recommended publications
  • Higgs Bosons and Supersymmetry
    Higgs bosons and Supersymmetry 1. The Higgs mechanism in the Standard Model | The story so far | The SM Higgs boson at the LHC | Problems with the SM Higgs boson 2. Supersymmetry | Surpassing Poincar´e | Supersymmetry motivations | The MSSM 3. Conclusions & Summary D.J. Miller, Edinburgh, July 2, 2004 page 1 of 25 1. Electroweak Symmetry Breaking in the Standard Model 1. Electroweak Symmetry Breaking in the Standard Model Observation: Weak nuclear force mediated by W and Z bosons • M = 80:423 0:039GeV M = 91:1876 0:0021GeV W Z W couples only to left{handed fermions • Fermions have non-zero masses • Theory: We would like to describe electroweak physics by an SU(2) U(1) gauge theory. L ⊗ Y Left{handed fermions are SU(2) doublets Chiral theory ) right{handed fermions are SU(2) singlets f There are two problems with this, both concerning mass: gauge symmetry massless gauge bosons • SU(2) forbids m)( ¯ + ¯ ) terms massless fermions • L L R R L ) D.J. Miller, Edinburgh, July 2, 2004 page 2 of 25 1. Electroweak Symmetry Breaking in the Standard Model Higgs Mechanism Introduce new SU(2) doublet scalar field (φ) with potential V (φ) = λ φ 4 µ2 φ 2 j j − j j Minimum of the potential is not at zero 1 0 µ2 φ = with v = h i p2 v r λ Electroweak symmetry is broken Interactions with scalar field provide: Gauge boson masses • 1 1 2 2 MW = gv MZ = g + g0 v 2 2q Fermion masses • Y ¯ φ m = Y v=p2 f R L −! f f 4 degrees of freedom., 3 become longitudinal components of W and Z, one left over the Higgs boson D.J.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • STATUS and PROSPECTS Theoretical Background. the Simplest Grand Unified Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server BILEPTONS - STATUS AND PROSPECTS PAUL H. FRAMPTON Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 E-mail: [email protected] ABSTRACT Theoretical backgound for bileptonic gauge bosons is reviewed, both the SU(15) GUT model and the 3-3-1 model. Then the mass limits for bileptons are discussed coming from e+e− scattering, polarized muon decay and muonium- antimuonium conversion. A consequence of precision electroweak data on the masses is mentioned. Discovery in e−e− at a linear collider is emphasised. Theoretical Background. The simplest grand unified theory (GUT) is SU(5) where each family is (10 + 5)¯ L. The gauge bosons mediate proton decay with (in the minimal form) too fast a rate. The gauge bosons have no definite B or L,only(B−L) which is conserved. SU(15) arose from the idea of having unification where the gauge bosons have well-defined B (and L) and so do not mediate proton decay. Each family is assigned to a 15 of SU(15); each of the 224 gauge bosons then have a definite B and L. Hence proton decay is absent in the gauge sector. The first stage of symmetry breaking takes SU(15) to SU(12)q × SU(3)l at a + − GUT scale MG. SU(3)l acts on the lepton triplet (e ,νe,e ) and contains the SU(2) doublet of gauge bosons (Y −−,Y−) and the antiparticles (Y ++,Y+).
    [Show full text]
  • 1 Standard Model: Successes and Problems
    Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles.
    [Show full text]
  • 331 Models and Grand Unification: from Minimal SU(5) to Minimal SU(6)
    Physics Letters B 762 (2016) 432–440 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb 331 models and grand unification: From minimal SU(5) to minimal SU(6) ∗ Frank F. Deppisch a, Chandan Hati b,c, , Sudhanwa Patra d, Utpal Sarkar e, José W.F. Valle f a Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom b Theoretical Physics Division, Physical Research Laboratory, Ahmedabad 380009, India c Discipline of Physics, Indian Institute of Technology Gandhinagar, Ahmedabad 382424, India d Center of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India e Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India f AHEP Group, Institut de Fisica Corpuscular – C.S.I.C./Universitat de Valencia, Parc Cientific de Paterna, C/ Catedràtico Josè Beltràn 2, E-46980 Paterna (Valencia), Spain a r t i c l e i n f o a b s t r a c t Article history: We consider the possibility of grand unification of the SU(3)c ⊗ SU(3)L ⊗ U(1)X model in an SU(6) Received 30 August 2016 gauge unification group. Two possibilities arise. Unlike other conventional grand unified theories, in Received in revised form 26 September SU(6) one can embed the 331 model as a subgroup such that different multiplets appear with different 2016 multiplicities. Such a scenario may emerge from the flux breaking of the unified group in an E(6) F-theory Accepted 1 October 2016 GUT. This provides new ways of achieving gauge coupling unification in 331 models while providing the Available online 5 October 2016 radiative origin of neutrino masses.
    [Show full text]
  • A Young Physicist's Guide to the Higgs Boson
    A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with..
    [Show full text]
  • Extra Quarks and Bileptons in BSM Physics in a 331 Model
    EPJ Web of Conferences 192, 00034 (2018) https://doi.org/10.1051/epjconf/201819200034 QCD@Work 2018 Extra Quarks and Bileptons in BSM Physics in a 331 Model 1,* 1,** Claudio Corianò , Antonio Costantini 1Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento and INFN-Lecce, Via Arnesano, 73100 Lecce, Italy Abstract. We describe some salient features of the 331F (Frampton-Pisano-Pleitez) bilepton model, in which the constraints of anomaly cancelation require the number of generations to be three. In a class of six models, four of which characterised by a β pa- rameter describing the embedding of the hypercharge in the SU(3)L symmetry, a specific choice for β allows bileptons in the spectrum, i.e. vectors and scalars of lepton numbers 2. At the same time the model allows exotic quarks, with the third quark generation ± treated asymmetrically respect to the other two. Bileptons generate specific signatures in the form of multilepton final states in Drell-Yan like processes, with and without associ- ated jets, which can be searched for at the LHC. 1 Introduction At the beginning of June 2018 the ATLAS collaboration reported the measurement of the coupling of the top quark to the Higgs boson [1]. At the same time the CMS collaboration published the results of a similar analysis [2]. From their common results it is established that the coupling of the top quark to the Higgs boson is compatible with the prediction of the Standard Model (SM), confirming that the mechanism of mass generation of the heaviest known quark is similar to that of the lighter ones [3, 4].
    [Show full text]
  • Collider Phenomenology of the 3-3-1 Model
    Prepared for submission to JHEP Collider Phenomenology of the 3-3-1 Model Qing-Hong Caoa;b;c Dong-Ming Zhang a aDepartment of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China bCollaborative Innovation Center of Qantum Matter, Beijing, China cCenter for High Energy Physics, Peking University, Beijing 100871, China E-mail: [email protected], [email protected] Abstract: We study collider phenomenology of the so-called 331 model with SU(3)C ⊗ SU(3)L U(1)X gauge structure at the large hadron collider, including single and double ⊗ Higgs boson productions, Higgs boson rare decay, Z0 boson production, new charged gauge boson pair production, and heavy quark pair production. We discuss all the possible collider signatures of new particle productions. Four benchmark 331 models, β = p3 ± and β = 1=p3, are studied in this work. ± arXiv:1611.09337v1 [hep-ph] 28 Nov 2016 Contents 1 Introduction2 2 The Model3 2.1 Higgs Sector3 2.1.1 Neutral scalars5 2.1.2 Charged scalars6 2.2 Gauge Sector7 2.3 Fermion Sector 10 2.4 Yukawa Sector 11 2.5 Electric Charge and Mass Spectrum in the 331 model 12 2.6 Residual Z2 symmetry, dark matter and long-lived particles 14 3 Higgs boson Phenomenology 15 3.1 Constraints from the single Higgs boson production 15 3.2 pp h Zγ channel 18 ! ! 3.3 Higgs-boson pair production 20 4 Phenomenology of Z0 21 4.1 Production of the Z0 boson 21 4.2 Decay of the Z0 boson 23 4.3 MZ0 constraint from the dilepton search at the LHC 25 0 4.4 Search for Z through AFB at
    [Show full text]
  • New Physics of Strong Interaction and Dark Universe
    universe Review New Physics of Strong Interaction and Dark Universe Vitaly Beylin 1 , Maxim Khlopov 1,2,3,* , Vladimir Kuksa 1 and Nikolay Volchanskiy 1,4 1 Institute of Physics, Southern Federal University, Stachki 194, 344090 Rostov on Don, Russia; [email protected] (V.B.); [email protected] (V.K.); [email protected] (N.V.) 2 CNRS, Astroparticule et Cosmologie, Université de Paris, F-75013 Paris, France 3 National Research Nuclear University “MEPHI” (Moscow State Engineering Physics Institute), 31 Kashirskoe Chaussee, 115409 Moscow, Russia 4 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia * Correspondence: [email protected]; Tel.:+33-676380567 Received: 18 September 2020; Accepted: 21 October 2020; Published: 26 October 2020 Abstract: The history of dark universe physics can be traced from processes in the very early universe to the modern dominance of dark matter and energy. Here, we review the possible nontrivial role of strong interactions in cosmological effects of new physics. In the case of ordinary QCD interaction, the existence of new stable colored particles such as new stable quarks leads to new exotic forms of matter, some of which can be candidates for dark matter. New QCD-like strong interactions lead to new stable composite candidates bound by QCD-like confinement. We put special emphasis on the effects of interaction between new stable hadrons and ordinary matter, formation of anomalous forms of cosmic rays and exotic forms of matter, like stable fractionally charged particles. The possible correlation of these effects with high energy neutrino and cosmic ray signatures opens the way to study new physics of strong interactions by its indirect multi-messenger astrophysical probes.
    [Show full text]
  • Baryon and Lepton Number Anomalies in the Standard Model
    Appendix A Baryon and Lepton Number Anomalies in the Standard Model A.1 Baryon Number Anomalies The introduction of a gauged baryon number leads to the inclusion of quantum anomalies in the theory, refer to Fig. 1.2. The anomalies, for the baryonic current, are given by the following, 2 For SU(3) U(1)B , ⎛ ⎞ 3 A (SU(3)2U(1) ) = Tr[λaλb B]=3 × ⎝ B − B ⎠ = 0. (A.1) 1 B 2 i i lef t right 2 For SU(2) U(1)B , 3 × 3 3 A (SU(2)2U(1) ) = Tr[τ aτ b B]= B = . (A.2) 2 B 2 Q 2 ( )2 ( ) For U 1 Y U 1 B , 3 A (U(1)2 U(1) ) = Tr[YYB]=3 × 3(2Y 2 B − Y 2 B − Y 2 B ) =− . (A.3) 3 Y B Q Q u u d d 2 ( )2 ( ) For U 1 BU 1 Y , A ( ( )2 ( ) ) = [ ]= × ( 2 − 2 − 2 ) = . 4 U 1 BU 1 Y Tr BBY 3 3 2BQYQ Bu Yu Bd Yd 0 (A.4) ( )3 For U 1 B , A ( ( )3 ) = [ ]= × ( 3 − 3 − 3) = . 5 U 1 B Tr BBB 3 3 2BQ Bu Bd 0 (A.5) © Springer International Publishing AG, part of Springer Nature 2018 133 N. D. Barrie, Cosmological Implications of Quantum Anomalies, Springer Theses, https://doi.org/10.1007/978-3-319-94715-0 134 Appendix A: Baryon and Lepton Number Anomalies in the Standard Model 2 Fig. A.1 1-Loop corrections to a SU(2) U(1)B , where the loop contains only left-handed quarks, ( )2 ( ) and b U 1 Y U 1 B where the loop contains only quarks For U(1)B , A6(U(1)B ) = Tr[B]=3 × 3(2BQ − Bu − Bd ) = 0, (A.6) where the factor of 3 × 3 is a result of there being three generations of quarks and three colours for each quark.
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]
  • The CP Violation and Scalar Dark Matter in a 331 Model
    The CP violation and scalar dark matter in a 331 model M. J. Neves1, ∗ 1Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA and Departamento de F´ısica, Universidade Federal Rural do Rio de Janeiro, Serop´edica, RJ 23890-971, Brazil (Dated: March 4, 2021) Abstract The 331 model with right-handed neutrinos is re-assessed to investigate the CP violation in the quark sector. After the spontaneous symmetry breaking, the masses and physical fields of the particle content are obtained. The fermions content of the 331 model is enlarged to include exotic quarks with known electric charge and with masses defined at the TeV scale. The existence of these exotic quarks induces extra CP violations via couplings with quarks of the Standard Model mediated by charged gauge boson with mass fixed at the TeV scale. An extra discrete Z2 symmetry is introduced in the 331 model to get a stable scalar field that can be a candidate to the dark matter content. The new scalar field interacts at tree level with the Z0 gauge boson that works as a dark matter portal. The relic density associated with the scalar field is calculated to yield the solution mass that satisfies the observed dark matter. The region allowed on the parameter space of the dark matter mass versus Z0 mass is obtained to include the bounds of PANDAX2017, XENON1T(2t.y) and LUX experiments. arXiv:2103.01999v1 [hep-ph] 2 Mar 2021 PACS numbers: 11.15.-q, 11.10.Nx, 12.60.-i Keywords: Physics beyond the Standard Model, CP violation, scalar dark matter.
    [Show full text]