Rare Variants in the Complement Factor H–Related Protein 5 Gene Contribute to Genetic Susceptibility to Iga Nephropathy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulation of the Complement System by Pentraxins
REVIEW published: 02 August 2019 doi: 10.3389/fimmu.2019.01750 Regulation of the Complement System by Pentraxins Karita Haapasalo 1 and Seppo Meri 1,2,3* 1 Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland, 2 HUSLAB, Helsinki University Hospital, Helsinki, Finland, 3 Department of Biomedical Sciences, Humanitas University, Milan, Italy The functions of pentraxins, like C-reactive protein (CRP), serum amyloid protein P (SAP) and pentraxin-3 (PTX3), are to coordinate spatially and temporally targeted clearance of injured tissue components, to protect against infections and to regulate related inflammation together with the complement system. For this, pentraxins have a dual relationship with the complement system. Initially, after a focused binding to their targets, e.g., exposed phospholipids or cholesterol in the injured tissue area, or microbial components, the pentraxins activate complement by binding its first component C1q. However, the emerging inflammation needs to be limited to the target area. Therefore, pentraxins inhibit complement at the C3b stage to prevent excessive damage. The complement inhibitory functions of pentraxins are based on their ability to interact with complement inhibitors C4bp or factor H (FH). C4bp binds to SAP, while FH binds to Edited by: both CRP and PTX3. FH promotes opsonophagocytosis through inactivation of C3b to Barbara Bottazzi, Milan University, Italy iC3b, and inhibits AP activity thus preventing formation of the C5a anaphylatoxin and the Reviewed by: complement membrane attack complex (MAC). Monitoring CRP levels gives important Livija Deban, clinical information about the extent of tissue damage and severity of infections. CRP is a Prokarium, United Kingdom valuable marker for distinguishing bacterial infections from viral infections. -
Investigation of Modifier Genes Within Copy Number Variations in Rett Syndrome
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/51147767 Investigation of modifier genes within copy number variations in Rett syndrome ARTICLE in JOURNAL OF HUMAN GENETICS · MAY 2011 Impact Factor: 2.53 · DOI: 10.1038/jhg.2011.50 · Source: PubMed CITATIONS DOWNLOADS VIEWS 6 89 134 15 AUTHORS, INCLUDING: Dag H Yasui Maria Antonietta Mencarelli University of California, Davis Azienda Ospedaliera Universitaria Senese 30 PUBLICATIONS 1,674 CITATIONS 58 PUBLICATIONS 962 CITATIONS SEE PROFILE SEE PROFILE Francesca Mari Janine M Lasalle Università degli Studi di Siena University of California, Davis 81 PUBLICATIONS 1,658 CITATIONS 98 PUBLICATIONS 3,525 CITATIONS SEE PROFILE SEE PROFILE Available from: Janine M Lasalle Retrieved on: 22 July 2015 Europe PMC Funders Group Author Manuscript J Hum Genet. Author manuscript; available in PMC 2012 January 01. Published in final edited form as: J Hum Genet. 2011 July ; 56(7): 508–515. doi:10.1038/jhg.2011.50. Europe PMC Funders Author Manuscripts Investigation of modifier genes within copy number variations in Rett syndrome Rosangela Artuso1,*, Filomena Tiziana Papa1,*, Elisa Grillo1, Mafalda Mucciolo1, Dag H. Yasui2, Keith W. Dunaway2, Vittoria Disciglio1, Maria Antonietta Mencarelli1, Marzia Pollazzon1, Michele Zappella3, Giuseppe Hayek4, Francesca Mari1, Alessandra Renieri1, Janine M. LaSalle2, and Francesca Ariani1 1 Medical Genetics Section, Biotechnology Department, University of Siena, Italy 2 Medical Microbiology and Immunology, Genome Center, School of Medicine, University of California, Davis, CA, USA 3 Child Neuropsychiatry, Versilia Hospital, Viareggio, Italy 4 Infantile Neuropsychiatry, Siena General Hospital, Italy Abstract MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). -
Nephrology Clinical Laboratory Research Compendium
Nephrology Clinical Laboratory Research Compendium The Nephrology Clinical Laboratory at Cincinnati Children’s Hospital Medical Center has expanded its clinical testing menu to now offer testing on a research basis. The CAP and CLIA certified laboratory operates under Good Clinical Laboratory Practice principles to ensure testing can be used to support findings of clinical trials. CONTACT US Our state of the art laboratory offers a broad testing menu to support research and pharmaceutical projects. We have the capability to perform traditional For more information on research or ELISA’S, multiplexing using the MSD Meso discovery, luminex magnetic bead clinical testing, please contact us at: assays, nephelometry and clinical chemistry. Phone: 513-636-4530 [email protected] The Nephrology Clinical Laboratory Research Compendium offers clinical chemistry, therapeutic drug monitoring, immunology, complement quantitation, www.cincinnatichildrens.org function and activation, specialty proteins and testing for various forms of thrombotic microangiopathies. COMPLEMENT SPECIALTY TESTING Autoantibody Testing Complement Components • Factor H Autoantibody (Quantitative) • C3 Nephritic Factor • C1 inhibitor (quantitative) • Factor B Autoantibody • C1q • C2 Functional Testing • C3 • CH50 • C4 • Alternative Pathway Functional Assay • C5 • MBL Pathway Functional Assay • C6 • C1 inhibitor Functional Assay • C7 • C8 Complement Activation Fragments • C9 • Complement Bb • Factor B • Complement Ba • Factor H • C3a • Factor I • C3c • Properdin • C3d -
Biomarker Discovery for Chronic Liver Diseases by Multi-Omics
www.nature.com/scientificreports OPEN Biomarker discovery for chronic liver diseases by multi-omics – a preclinical case study Daniel Veyel1, Kathrin Wenger1, Andre Broermann2, Tom Bretschneider1, Andreas H. Luippold1, Bartlomiej Krawczyk1, Wolfgang Rist 1* & Eric Simon3* Nonalcoholic steatohepatitis (NASH) is a major cause of liver fbrosis with increasing prevalence worldwide. Currently there are no approved drugs available. The development of new therapies is difcult as diagnosis and staging requires biopsies. Consequently, predictive plasma biomarkers would be useful for drug development. Here we present a multi-omics approach to characterize the molecular pathophysiology and to identify new plasma biomarkers in a choline-defcient L-amino acid-defned diet rat NASH model. We analyzed liver samples by RNA-Seq and proteomics, revealing disease relevant signatures and a high correlation between mRNA and protein changes. Comparison to human data showed an overlap of infammatory, metabolic, and developmental pathways. Using proteomics analysis of plasma we identifed mainly secreted proteins that correlate with liver RNA and protein levels. We developed a multi-dimensional attribute ranking approach integrating multi-omics data with liver histology and prior knowledge uncovering known human markers, but also novel candidates. Using regression analysis, we show that the top-ranked markers were highly predictive for fbrosis in our model and hence can serve as preclinical plasma biomarkers. Our approach presented here illustrates the power of multi-omics analyses combined with plasma proteomics and is readily applicable to human biomarker discovery. Nonalcoholic fatty liver disease (NAFLD) is the major liver disease in western countries and is ofen associated with obesity, metabolic syndrome, or type 2 diabetes. -
Complement Factor H Deficiency and Endocapillary Glomerulonephritis Due to Paternal Isodisomy and a Novel Factor H Mutation
Genes and Immunity (2011) 12, 90–99 & 2011 Macmillan Publishers Limited All rights reserved 1466-4879/11 www.nature.com/gene ORIGINAL ARTICLE Complement factor H deficiency and endocapillary glomerulonephritis due to paternal isodisomy and a novel factor H mutation L Schejbel1, IM Schmidt2, M Kirchhoff3, CB Andersen4, HV Marquart1, P Zipfel5 and P Garred1 1Department of Clinical Immunology, Laboratory of Molecular Medicine, Rigshospitalet, Copenhagen, Denmark; 2Department of Pediatrics, Rigshospitalet, Copenhagen, Denmark; 3Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark; 4Department of Pathology, Rigshospitalet, Copenhagen, Denmark and 5Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany Complement factor H (CFH) is a regulator of the alternative complement activation pathway. Mutations in the CFH gene are associated with atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II and C3 glomerulonephritis. Here, we report a 6-month-old CFH-deficient child presenting with endocapillary glomerulonephritis rather than membranoproliferative glomerulonephritis (MPGN) or C3 glomerulonephritis. Sequence analyses showed homozygosity for a novel CFH missense mutation (Pro139Ser) associated with severely decreased CFH plasma concentration (o6%) but normal mRNA splicing and expression. The father was heterozygous carrier of the mutation, but the mother was a non-carrier. Thus, a large deletion in the maternal CFH locus or uniparental isodisomy was suspected. Polymorphic markers across chromosome 1 showed homozygosity for the paternal allele in all markers and a lack of the maternal allele in six informative markers. This combined with a comparative genomic hybridization assay demonstrated paternal isodisomy. Uniparental isodisomy increases the risk of homozygous variations in other genes on the affected chromosome. -
A Novel CFHR5 Mutation Associated with C3 Glomerulonephritis in a Turkish Girl
A novel CFHR5 mutation associated with C3 glomerulonephritis in a Turkish girl Nesrin Besbas, Bora Gulhan, Safak Gucer, Emine Korkmaz & Fatih Ozaltin Journal of Nephrology ISSN 1121-8428 Volume 27 Number 4 J Nephrol (2014) 27:457-460 DOI 10.1007/s40620-013-0008-1 1 23 Your article is protected by copyright and all rights are held exclusively by Italian Society of Nephrology. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Nephrol (2014) 27:457–460 DOI 10.1007/s40620-013-0008-1 CASE REPORT A novel CFHR5 mutation associated with C3 glomerulonephritis in a Turkish girl Nesrin Besbas • Bora Gulhan • Safak Gucer • Emine Korkmaz • Fatih Ozaltin Received: 17 July 2013 / Accepted: 31 July 2013 / Published online: 5 December 2013 Ó Italian Society of Nephrology 2013 Abstract C3 glomerulopathy defines a subgroup of syndrome and persistently low C3 level, thus expanding the membranoproliferative glomerulonephritis (MPGN) char- genetic and phenotypic spectrum of the disease. Ecu- acterized by complement 3 (C3)-positive, immunoglobu- lizumab seems to be ineffective in this subtype. -
Complement Factor H–Related Hybrid Protein Deregulates Complement in Dense Deposit Disease
Complement factor H–related hybrid protein deregulates complement in dense deposit disease Qian Chen, … , Christine Skerka, Peter F. Zipfel J Clin Invest. 2014;124(1):145-155. https://doi.org/10.1172/JCI71866. Research Article Nephrology The renal disorder C3 glomerulopathy with dense deposit disease (C3G-DDD) pattern results from complement dysfunction and primarily affects children and young adults. There is no effective treatment, and patients often progress to end-stage renal failure. A small fraction of C3G-DDD cases linked to factor H or C3 gene mutations as well as autoantibodies have been reported. Here, we examined an index family with 2 patients with C3G-DDD and identified a chromosomal deletion in the complement factor H–related (CFHR) gene cluster. This deletion resulted in expression of a hybrid CFHR2-CFHR5 plasma protein. The recombinant hybrid protein stabilized the C3 convertase and reduced factor H–mediated convertase decay. One patient was refractory to plasma replacement and exchange therapy, as evidenced by the hybrid protein quickly returning to pretreatment plasma levels. Subsequently, complement inhibitors were tested on serum from the patient for their ability to block activity of CFHR2-CFHR5. Soluble CR1 restored defective C3 convertase regulation; however, neither eculizumab nor tagged compstatin had any effect. Our findings provide insight into the importance of CFHR proteins for C3 convertase regulation and identify a genetic variation in the CFHR gene cluster that promotes C3G-DDD. Monitoring copy number and sequence variations in the CFHR gene cluster in C3G-DDD and kidney patients with C3G-DDD variations will help guide treatment strategies. Find the latest version: https://jci.me/71866/pdf Research article Complement factor H–related hybrid protein deregulates complement in dense deposit disease Qian Chen,1 Michael Wiesener,2 Hannes U. -
O) 2 Platelets Mediated by Properdin and C3(H Complement Activation on Stimulated Identification of a Novel Mode Of
Identification of a Novel Mode of Complement Activation on Stimulated Platelets Mediated by Properdin and C3(H2 O) This information is current as of October 1, 2021. Gurpanna Saggu, Claudio Cortes, Heather N. Emch, Galia Ramirez, Randall G. Worth and Viviana P. Ferreira J Immunol 2013; 190:6457-6467; Prepublished online 15 May 2013; doi: 10.4049/jimmunol.1300610 Downloaded from http://www.jimmunol.org/content/190/12/6457 Supplementary http://www.jimmunol.org/content/suppl/2013/05/17/jimmunol.130061 Material 0.DC1 http://www.jimmunol.org/ References This article cites 72 articles, 37 of which you can access for free at: http://www.jimmunol.org/content/190/12/6457.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of a Novel Mode of Complement Activation on Stimulated Platelets Mediated by Properdin and C3(H2O) Gurpanna Saggu,*,1 Claudio Cortes,*,†,1 Heather N. -
Proteomic Alterations of HDL in Youth with Type 1 Diabetes and Their Associations with Glycemic Control: a Case-Control Study Evgenia Gourgari Georgetown University
University of Kentucky UKnowledge Saha Cardiovascular Research Center Faculty Cardiovascular Research Publications 3-28-2019 Proteomic Alterations of HDL in Youth with Type 1 Diabetes and their Associations with Glycemic Control: A Case-Control Study Evgenia Gourgari Georgetown University Junfeng Ma Georgetown University Martin P. Playford National Heart, Lung and Blood Institute Nehal N. Mehta National Heart, Lung and Blood Institute Radoslav Goldman Georgetown University See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/cvrc_facpub Part of the Cardiology Commons, and the Circulatory and Respiratory Physiology Commons Repository Citation Gourgari, Evgenia; Ma, Junfeng; Playford, Martin P.; Mehta, Nehal N.; Goldman, Radoslav; Remaley, Alan T.; and Gordon, Scott M., "Proteomic Alterations of HDL in Youth with Type 1 Diabetes and their Associations with Glycemic Control: A Case-Control Study" (2019). Saha Cardiovascular Research Center Faculty Publications. 40. https://uknowledge.uky.edu/cvrc_facpub/40 This Article is brought to you for free and open access by the Cardiovascular Research at UKnowledge. It has been accepted for inclusion in Saha Cardiovascular Research Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Evgenia Gourgari, Junfeng Ma, Martin P. Playford, Nehal N. Mehta, Radoslav Goldman, Alan T. Remaley, and Scott M. Gordon Proteomic Alterations of HDL in Youth with Type 1 Diabetes and their Associations with Glycemic Control: A Case-Control Study Notes/Citation Information Published in Cardiovascular Diabetology, v. -
New Functional and Structural Insights from Updated Mutational Databases for Complement Factor H, Factor I, Membrane Cofactor Protein and C3
Biosci. Rep. (2014) / 34 / art:e00146 / doi 10.1042/BSR20140117 New functional and structural insights from updated mutational databases for complement factor H, Factor I, membrane cofactor protein and C3 Elizabeth Rodriguez*1, Pavithra M. Rallapalli*1, Amy J. Osborne* and Stephen J. Perkins*2 *Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, U.K. Synopsis aHUS (atypical haemolytic uraemic syndrome), AMD (age-related macular degeneration) and other diseases are associated with defective AP (alternative pathway) regulation. CFH (complement factor H), CFI (complement factor I), MCP (membrane cofactor protein) and C3 exhibited the most disease-associated genetic alterations in the AP.Our interactive structural database for these was updated with a total of 324 genetic alterations. A consensus structure for the SCR (short complement regulator) domain showed that the majority (37 %) of SCR mutations occurred at its hypervariable loop and its four conserved Cys residues. Mapping 113 missense mutations onto the CFH structure showed that over half occurred in the C-terminal domains SCR-15 to -20. In particular, SCR-20 with the highest total of affected residues is associated with binding to C3d and heparin-like oligosaccharides. No clustering of 49 missense mutations in CFI was seen. In MCP, SCR-3 was the most affected by 23 missense mutations. In C3, the neighbouring thioester and MG (macroglobulin) domains exhibited most of 47 missense mutations. The mutations in the regulators CFH, CFI and MCP involve loss-of-function, whereas those for C3 involve gain-of-function. This combined update emphasizes the importance of the complement AP in inflammatory disease, clarifies the functionally important regions in these proteins, and will facilitate diagnosis and therapy. -
Hemolytic Uremic Syndrome: a Factor H Mutation (E1172stop) Causes Defective Complement Control at the Surface of Endothelial Cells
Hemolytic Uremic Syndrome: A Factor H Mutation (E1172Stop) Causes Defective Complement Control at the Surface of Endothelial Cells Stefan Heinen,* Miha´ly Jo´zsi,* Andrea Hartmann,* Marina Noris,† Giuseppe Remuzzi,† Christine Skerka,* and Peter F. Zipfel*‡ *Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, and ‡Faculty of Biology, Friedrich Schiller University, Jena, Germany; and †Mario Negri Institute for Pharmacological Research Villa Camozzi, Ranica, Bergamo, Italy Defective complement regulation results in hemolytic uremic syndrome (HUS), a disease that is characterized by microangi- opathy, thrombocytopenia, and acute renal failure and that causes endothelial cell damage. For characterization of how defective complement regulation relates to the pathophysiology, the role of the complement regulator factor H and also of a mutant factor H protein was studied on the surface of human umbilical vein endothelial cells. The mutant 145-kD factor H protein was purified to homogeneity, from plasma of a patient with HUS, who is heterozygous for a factor H gene mutation G3587T, which introduces a stop codon at position 1172. Functional analyses show that the lack of the most C-terminal domain short consensus repeats 20 severely affected recognition functions (i.e., binding to heparin, C3b, C3d, and the surface of endothelial cells). Wild-type factor H as well as the mutant protein formed dimers in solution as shown by cross-linking studies and mass spectroscopy. When assayed in fluid phase, the complement regulatory activity of the mutant protein was normal and comparable to wild-type factor H. However, on the surface of endothelial cells, the mutant factor H protein showed severely reduced regulatory activities and lacked protective functions. -
Epistatic Interactions of Genetic Loci Associated with Age-Related
www.nature.com/scientificreports OPEN Epistatic interactions of genetic loci associated with age‑related macular degeneration Christina Kiel1,3, Christoph A. Nebauer1,3, Tobias Strunz1,3, Simon Stelzl1 & Bernhard H. F. Weber 1,2* The currently largest genome‑wide association study (GWAS) for age‑related macular degeneration (AMD) defnes disease association with genome‑wide signifcance for 52 independent common and rare genetic variants across 34 chromosomal loci. Overall, these loci contain over 7200 variants and are enriched for genes with functions indicating several shared cellular processes. Still, the precise mechanisms leading to AMD pathology are largely unknown. Here, we exploit the phenomenon of epistatic interaction to identify seemingly independent AMD‑associated variants that reveal joint efects on gene expression. We focus on genetic variants associated with lipid metabolism, organization of extracellular structures, and innate immunity, specifcally the complement cascade. Multiple combinations of independent variants were used to generate genetic risk scores allowing gene expression in liver to be compared between low and high‑risk AMD. We identifed genetic variant combinations correlating signifcantly with expression of 26 genes, of which 19 have not been associated with AMD before. This study defnes novel targets and allows prioritizing further functional work into AMD pathobiology. A frst successful genome-wide association study (GWAS) was reported in 2005 and identifed with genome- wide signifcance genetic variants at the CFH locus associated with age-related macular degeneration (AMD), a complex disease which is a frequent cause of progressive vision loss in the elderly population 1. Since then, the list of AMD-associated genetic variation has grown exponentially, presently bringing the total to 52 independent common and rare variants across 34 chromosomal loci2.